Home
Class 12
MATHS
Using properties of determinants, prove ...

Using properties of determinants, prove that `|(-a^2,ab,ac),(ba,-b^2,bc),(ca,cb,-c^2)|=4a^2 b^2 c^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

By using properties of determinants, prove that |[-a^2,ab,ac],[ba,-b^2,bc],[ca,cb,-c^2]|=4a^2b^2c^2

Prove that |(-a^2,ab,ac),(bc,-b^2,bc),(ca,cb,-c^2)|=4a^(2)b^(2) c^(2) .

Prove that: |[-a^2, ab,ac],[ba,-b^2,bc],[ca,cb,-c^2]|=4a^2b^2c^2

Prove that, abs((-a^2,ab,ac),(ba,-b^2,bc),(ca,cb,-c^2)) =4 a^2b^2c^2 .

Using the Properties of determinants, prove that following: {:|(-a^2,ab,ac),(ba,-b^2,bc),(ac,bc,-c^2)|=4a^2b^2c^2

Using properties of determinants,prove that det[[-a^(2),ab,acba,-b^(2),bcca,cb,-c^(2)]]=4a^(2)b^(2)c^(2)

Using properties of determinants, prove that : |{:(a^(2)+1,ab,ac),(ba,b^(2)+1,bc),(ca,cb,c^(2)+1):}|=a^(2)+b^(2)+c^(2)+1

Using properties of determinants, prove the following |(a^2,ab,ac),(ab,b^2+1,bc),(ca,cb,c^2+1)|=1+a^2+b^2+c^2 .