Home
Class 12
MATHS
[" If "a(1)*a(2)*a(3)...a(n)in R^(+)" an...

[" If "a_(1)*a_(2)*a_(3)...a_(n)in R^(+)" and "a_(1)*a_(2)*a_(3)...a_(n)=1," then minimum value of "(1+a_(1)+a_(1)^(2))(1+a_(2)+a_(2)^(2))],[(1+a_(3)+a_(3)^(2))...(1+a_(n)+a_(n)^(2))" is equal to ":],[[" (A) "3^(n+1)," (B) "3^(n)," (C) "3^(n-1)]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If a_(1), a_(2), a_(3).... A_(n) in R^(+) and a_(1).a_(2).a_(3).... A_(n) = 1 , then minimum value of (1 + a_(1) + a_(1)^(2)) (a + a_(2) + a_(2)^(2)) (1 + a_(3) + a_(3)^(2))..... (1 + a_(n) + a_(n)^(2)) is equal to

If a_(1), a_(2), a_(3).... A_(n) in R^(+) and a_(1).a_(2).a_(3).... A_(n) = 1 , then minimum value of (1 + a_(1) + a_(1)^(2)) (a + a_(2) + a_(2)^(2)) (1 + a_(3) + a_(3)^(2))..... (1 + a_(n) + a_(n)^(2)) is equal to

If a_(1), a_(2) , a_(3),…,a _(n+1) are in A. P. then the value of (1)/(a _(1)a_(2))+(1)/(a_(2)a_(3))+(1)/(a_(3)a_(4))+...+(1)/(a_(n)a_(n+1)) is-

Let a_(1),a_(2),a_(3),...a_(n) be an AP.Prove that: (1)/(a_(1)a_(n))+(1)/(a_(2)a_(n-1))+(1)/(a_(3)a_(n-2))+......+(1)/(a_(n)a_(1))=

If a_(i)gt0 for i u=1, 2, 3, … ,n and a_(1)a_(2)…a_(n)=1, then the minimum value of (1+a_(1))(1+a_(2))…(1+a_(n)) , is

If a_(i)gt0 for i u=1, 2, 3, … ,n and a_(1)a_(2)…a_(n)=1, then the minimum value of (1+a_(1))(1+a_(2))…(1+a_(n)) , is

Q.if a_(1)>0f or i=1,2,......,n and a_(1)a_(2),......a_(n)=1, then minimum value (1+a_(1))(1+a_(2)),...,,(1+a_(n)) is :

If (1+x)^(n) = a_(0) + a_(1)x + a_(2)x^(2) + ....+a_(n)x^(n) , then (1+(a_(1))/(a_(0)))(1+(a_(2))/(a_(1)))(1+(a_(3))/(a_(2)))...(1+(a_(n))/(a_(n-1)))=

If a_(1),a_(2),...,a_(n)>0, then prove that (a_(1))/(a_(2))+(a_(2))/(a_(3))+(a_(3))/(a_(4))+...+(a_(n-1))/(a_(n))+(a_(n))/(a_(1))>n

If a_(1), a_(2), a_(3), ……. , a_(n) are in A.P. and a_(1) = 0 , then the value of (a_(3)/a_(2) + a_(4)/a_(3) + .... + a_(n)/a_(n - 1)) - a_(2)(1/a_(2) + 1/a_(3) + .... + 1/a_(n - 2)) is equal to