Home
Class 12
MATHS
int(x^49 tan^-1 x^50)/(1+x^100)dx=k[tan^...

`int(x^49 tan^-1 x^50)/(1+x^100)dx=k[tan^-1(x^50)]^2+C` , then `k` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

int(x^(49)tan^(-1)(x^(50)))/((1+x^(100)))dx=k[tan^(-1)(x^(50))]^(2)+C, , then k is equal to

int_( then k)^( if )(x^(49)tan^(-1)(x^(50)))/(1+x^(100))dx=k*[tan^(-1)(x^(50))]^(2)+c

int (x^(49)Tan^(-1) (x^(50)))/((1+x^(100)))dx=k (Tan^(-1)(x^(50))^(2)+c rArr k=

int (1- tan x//2)/(1+ tan x//2)dx=

int (1 + tan^(2) x)/(1 -tan^(2) x) dx =

int (1-tan^2x)/(1+tan^2x) dx

int (1-tan^2x)/(1+tan^2x) dx

int(sin^(2)x)/(1+cos2x)dx=k (tan x-x)+c then k is equal to

If int (2^x)/(sqrt(1-4^(x)))dx = k sin^(-1) (2^(x))+C , then k is equal to :