Home
Class 12
MATHS
If m and x are real numbers where m in I...

If `m` and `x` are real numbers where `m in I` `e^(2micot^(-1)x)((x.i+1)^m)/((x.i-1)^m)`

Text Solution

Verified by Experts

`Cot^(-1)x=theta`
`x=cottheta`
`((x i+1)/(x i-1))^m=(i^n(x+1/i)^m)/(i^m(x-1/i)^m)`
`=(x-1)^m/(x+i)^n`
`=(cottheta-1)^m/(cottheta+1)^m`
`=(costheta-sintheta)^m/(costheta+sintheta)^m`
`=(e^(-itheta)/e^(1theta))=(e^(-i2theta))^m`
`=e^(i2mtheta)`
...
Promotional Banner

Similar Questions

Explore conceptually related problems

If m and x are two real numbers where m in I, then e^(2micot^(-1)x)((x*i+1)/(x*i-1))^m (A)   cos x+i sin x   (B)   m/2   (C)   1    (D)   (m+1)/2

If m and x are two real numbers where m in I , then e^(2micot^(-1)x)((x*i+1)/(x*i-1))^m (A)    cos x+i sin x    (B)    m/2    (C)    1     (D)    (m+1)/2

If m and x are two real numbers where m in I , then e^(2micot^(-1)x)((x*i+1)/(x*i-1))^m (A)    cos x+i sin x    (B)    m/2    (C)    1     (D)    (m+1)/2

If m and x are two real numbers where m in I , then e^(2micot^(-1)x)((x*i+1)/(x*i-1))^m (A)    cos x+i sin x    (B)    m/2    (C)    1     (D)    (m+1)/2

Find the real values of x and y,quad if :(3m-2i)(2+i)^(2)=10(1+i)

If I(m,n)=int_0^1x^(m-1)(1-x)^(n-1)dx , then

If I(m,n)=int_(0)^(1)x^(m-1)(1-x)^(n-1)dx, then

Find int x^(2)*("exp" ( m sin^(-1) x)/(sqrt(1-x^(2))) dx " on " (-1,1) where m is a real number . ( Here for Y in R , exp. {y} stands for e^(y)) .

Three particles of masses m , m and 4kg are kept at a verticals of triangle ABC . Coordinates of A , B and C are (1,2) , (3,2) and (-2,-2) respectively such that the centre of mass lies at origin. Find the value of mass m . Hint. x_(cm)=(sum_(i-1)^(3)m_(i)x_(i))/(sum_(i=1)^(3)m_(i)) , y_(cm)=(sum_(i=1)^(3)m_(i)y_(i))/(sum_(i=1)^(3)m_(i))

Three particles of masses m , m and 4kg are kept at a verticals of triangle ABC . Coordinates of A , B and C are (1,2) , (3,2) and (-2,-2) respectively such that the centre of mass lies at origin. Find the value of mass m . Hint. x_(cm)=(sum_(i-1)^(3)m_(i)x_(i))/(sum_(i=1)^(3)m_(i)) , y_(cm)=(sum_(i=1)^(3)m_(i)y_(i))/(sum_(i=1)^(3)m_(i))