Home
Class 12
MATHS
lim(x rarr e^+)(lnx)^(1/(x-e)) is...

`lim_(x rarr e^+)(lnx)^(1/(x-e))` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Lim_(x rarre)(log x-1)/(x-e)=

lim_(x rarr oo)(e^((1)/(x))-1))

lim_(x rarr0)(1+x)^((1)/(x))=e

lim_(x rarr0)(e^(sin x)-1)/(x)

lim_(x rarr0)(e^(sin x)-1)/(x)

Evaluate: (lim)_(x rarr e)(log x-1)/(x-e)

The value of lim_(x rarr0)(e^(x)-1)/(x) is-

lim_(x rarr2)((e^(x)-e^(2))/(x-2))

lim_(x rarr0)((e^(x)-x-1)/(x))