Home
Class 12
MATHS
Let O, A, B be three collinear points su...

Let `O`, `A`, `B` be three collinear points such that `OA.OB=1`. If `O` and `B` represent the complex numbers `O` and `z`, then `A` represents

Promotional Banner

Similar Questions

Explore conceptually related problems

Let OP.OQ=1 and let O,P and Q be three collinear points. If O and Q represent the complex numbers of origin and z respectively, then P represents

Let OP.OQ=1 and let O,P and Q be three collinear points. If O and Q represent the complex numbers of origin and z respectively, then P represents

Let A,B,C be three collinear points which are such that AB.AC=1 and the points are represented in the Argand plane by the complex numbers, 0, z_(1) and z_(2) respectively. Then,

Let A,B,C be three collinear points which are such that AB.AC=1 and the points are represented in the Argand plane by the complex numbers, 0, z_(1) and z_(2) respectively. Then,

Let a , b , c be distinct complex numbers with |a|=|b|=|c|=1 and z_(1) , z_(2) be the roots of the equation az^(2)+bz+c=0 with |z_(1)|=1 . Let P and Q represent the complex numbers z_(1) and z_(2) in the Argand plane with /_POQ=theta , o^(@) lt 180^(@) (where O being the origin).Then

Let a , b , c be distinct complex numbers with |a|=|b|=|c|=1 and z_(1) , z_(2) be the roots of the equation az^(2)+bz+c=0 with |z_(1)|=1 . Let P and Q represent the complex numbers z_(1) and z_(2) in the Argand plane with /_POQ=theta , o^(@) lt 180^(@) (where O being the origin).Then

Let a , b , c be distinct complex numbers with |a|=|b|=|c|=1 and z_(1) , z_(2) be the roots of the equation az^(2)+bz+c=0 with |z_(1)|=1 . Let P and Q represent the complex numbers z_(1) and z_(2) in the Argand plane with /_POQ=theta , o^(@) lt 180^(@) (where O being the origin).Then

Let a , b , c be distinct complex numbers with |a|=|b|=|c|=1 and z_(1) , z_(2) be the roots of the equation az^(2)+bz+c=0 with |z_(1)|=1 . Let P and Q represent the complex numbers z_(1) and z_(2) in the Argand plane with /_POQ=theta , o^(@) lt 180^(@) (where O being the origin).Then

Consider the circle: x^2+y^2=r^2 with centre O. A and B are collinear with O such that OA. OB=r^2. The number of circles passing through A and B, which are orthogonal to the circle C is

In the Argand diagram. if O, P and Q represent respectively the origin and the complex numbers z and z+iz, then the angle angle OPQ is :