Home
Class 11
MATHS
If 1/1^2+2/2^2+3/3^2+...oo= pi^2/6 impli...

If `1/1^2+2/2^2+3/3^2+...oo= pi^2/6` implies `1/1^2+1/3^2+1/5^2+...oo=pi^2/k` then `k=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If 1/1^2+1/2^2+1/3^2+...oo=pi^2/6 then value of 1-1/2^2+1/3^2-1/4^2+...oo=

If 1/1^2+1/2^2+1/3^2+...oo=pi^2/6 then value of 1-1/2^2+1/3^2-1/4^2+...oo=

If 1/1^2+1/2^2+1/3^2+...oo=pi^2/6 then value of 1-1/2^2+1/3^2-1/4^2+...oo=

If 1/1^2+1/2^2+1/3^2+...oo=pi^2/6 then value of 1-1/2^2+1/3^2-1/4^2+...oo=

If (1)/(1^(2)) + (1)/(2^(2)) + (1)/(3^(2)) + …..oo= (pi^(2))/(6) then (1)/(1^(2)) + (1)/(3^(2)) + (1)/(5^(2))+ ….=

If (1)/(1^(2))+(1)/(2^(2))+(1)/(3^(2))......oo=(pi^(2))/(6) then (1)/(1^(2))+(1)/(3^(2))+(1)/(5^(2))...=

If (1)/(1^(2))+(1)/(2^(2))+(1)/(3^(2))+...*to oo=(pi^(2))/(6), then (1)/(1^(2))+(1)/(3^(2))+(1)/(5^(2))+... equals pi^(2)/8 b.pi^(2)/12 c.pi^(2)/3 d.pi^(2)/2

If (1)/(1^(2))+(1)/(2^(2))+(1)/(3^(2))+...oo=(pi^(2))/(6) then value of 1-(1)/(2^(2))+(1)/(3^(2))-(1)/(4^(2))+...oo=

(1/(1!) +1/(2!) +1/(3!) + .....oo) (1/(2!) -1/(3!) +1/(4!)-1/(5!) .....oo)