Home
Class 11
MATHS
Let L L ' be the latus rectum through th...

Let `L L '` be the latus rectum through the focus of the hyperbola `(x^2)/(a^2)-(y^2)/(b^2)=1` and `A '` be the farther vertex. If ` A ' L L '` is equilateral, then the eccentricity of the hyperbola is (axes are coordinate axes). `sqrt(3)` (b) `sqrt(3)+1` `((sqrt(3)+1)/(sqrt(2)))` (d) `((sqrt(3)+1))/(sqrt(3))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let L L ' be the latus rectum through the focus of the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 and A ' be the farther vertex. If A ' L L ' is equilateral, then the eccentricity of the hyperbola is (axes are coordinate axes). (a) sqrt(3) (b) sqrt(3)+1 ((sqrt(3)+1)/(sqrt(2))) (d) ((sqrt(3)+1))/(sqrt(3))

Let L L ' be the latus rectum through the focus of the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 and A ' be the farther vertex. If A ' L L ' is equilateral, then the eccentricity of the hyperbola is (axes are coordinate axes). (a) sqrt(3) (b) sqrt(3)+1 (c) ((sqrt(3)+1)/(sqrt(2))) (d) ((sqrt(3)+1))/(sqrt(3))

Let LL' be the latus rectum through the focus of the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 and A' be the farther vertex.If $A'LL' is equilateral,then the eccentricity of the hyperbola is (axes are coordinate axes).sqrt(3)( b) sqrt(3)+1((sqrt(3)+1)/(sqrt(2))) (d) ((sqrt(3)+1))/(sqrt(3))

sqrt 2009/3 (x^2-y^2)=1 , then eccentricity of the hyperbola is :

The eccentricity of the hyperbola x=a/2(t+1/t), y=a/2(t-1/t) is a. sqrt(2) . b. sqrt(3) c. 2sqrt(3) d. 3sqrt(2)

The eccentricity of the hyperbola x ^(2) - y ^(2) = 4 is :a) sqrt3 b) 2 c) 1.5 d) sqrt2

The eccentricity of ellipse, if the distance between the foci and L.R is same a. (sqrt(3))/2 b. 2/(sqrt(3)) c. 1/(sqrt(2)) d. (sqrt(5)-1)/2

The eccentricity of the hyperbola (sqrt(1999))/(3)(x^(2)-y^(2))=1 is

The eccentricity of the hyperbola (sqrt(1999))/(3)(x^(2)-y^(2))=1 , is

The eccentricity of the hyperbola (sqrt(1999))/(3)(x^(2)-y^(2))=1 , is