Home
Class 11
MATHS
a^2cotA+b^2cotB+c^2cotC=...

`a^2cotA+b^2cotB+c^2cotC=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that a^(2)cotA+b^(2)cotB+c^(2)cotC=(abc)/(R)

In Delta ABC prove that cotA + cotB + cotC = (a^2 + b^2 + c^2)/(4Delta)

In Delta ABC prove that (b^2-c^2)cotA + (c^2-a^2)cotB + (a^2-b^2)cotC = 0

If A+B+C=pi and A, B, C are acute positive angles and cotA cotB cotC = k, then

In DeltaABC , prove that: cotA/2+cotB/2+cotC/2=(a+b+c)/(a+b-c)cotC/2

In any /_\ A B C , prove that (b^2-c^2)cotA+(c^2-a^2)cotB+(c^2-b^2)cotC=0

In any /_\ A B C , prove that (b^2-c^2)cotA+(c^2-a^2)cotB+(c^a-b^2)cotC=0

In any /_\ A B C , prove that (b^2-c^2)cotA+(c^2-a^2)cotB+(c^a-b^2)cotC=0

In DeltaABC , a^(2),b^(2),c^(2) are in A.P. Prove that cotA, cotB, cotC are also in A.P.

If a^2,b^2,c^2 are in A.P., prove that cotA ,cotB ,cotC are in AdotPdot