Home
Class 9
MATHS
1/(1+x^(a-b))+1/(1+x^(b-a))=1...

`1/(1+x^(a-b))+1/(1+x^(b-a))=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve: 1/(1+x^(a-b))+1/(1+x^(b-a))=?

Find the value of (1)/(1+x^(a-b))+(1)/(1+x^(b-a))

1/(1+x^(b-a)+x^(c-a))+1/(1+x^(a-b)+x^(c-b))+1/(1+x^(b-c)+x^(a-c))=?

Prove that: 1/(1+x^(b-a)+\ x^(c-a))+1/(1+x^(a-b)+\ x^(c-b))+1/(1+x^(b-c)+x^(a-c))=1

If y = (1)/(1 + x^(a - b) + x^(c - b)) + (1)/(1 + x^(b-c) + x^(a - c)) + (1)/(1 + x^(b - a) + x^(c - a)) then find (dy)/(dx) at e^(a^(b^(c )))

If y = (1)/(1 + x^(a - b) + x^(c - b)) + (1)/(1 + x^(b-c) + x^(a - c)) + (1)/(1 + x^(b - a) + x^(c - a)) then find (dy)/(dx) at e^(a^(b^(c )))

If y=1/(1+x^(a-b)+x(c-b))+1/(1+x^(b-c)+x^(a-c))+1/(1+x^(b-a)+x^(c-a)) then find (dy)/(dx) at e^(a^(b^c))