Home
Class 9
MATHS
If p=2-a; prove that a^3+6ap+p^3-8=0...

If `p=2-a`; prove that `a^3+6ap+p^3-8=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If p=2-a , prove that a^3+6a p+p^3-8=0

If p=2-a , prove that a^3+6a p+p^3-8=0

If p=2-a , then a^(3)+6ap+p^(3)-8 =

Prove that if p=2-a, then a^(3)+6ap+p^(3)-8=0

If a,b,c are in A.P.,prove that - a^3-8b^3+c^3+6abc=0

If p-2^(a), then show that a^(4)+6ap+p^(8)=0

If a, b, c are in A.P., prove that : a^3+4b^3+c^3=3b (a^2+c^2) .

If the roots of the equation x^(3) - px^(2) + qx - r = 0 are in A.P., then prove that, 2p^3 −9pq+27r=0

If a,b,c are in A.P.,prove that 8b^(3)-a^(3)-c^(3)=3ac(a+c)

If in an A.P, S_n=n^2p and S_m=m^2p , then prove that S_p is equal to p^3