Home
Class 12
MATHS
Consider the cubic f(x)=8x^3+4a x^2+2b x...

Consider the cubic `f(x)=8x^3+4a x^2+2b x+a` where `a , b\ in Rdot` For `a=1\ ` if `y=f(x)` is strictly increasing `AA\ x\ in R` then maximum range of values of `b` is `(-oo,1/3]` (b) `(1/3,\ oo)` `[1/3,\ oo)` (d) `(-oo,\ oo)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the cubic f(x)=8x^(3)+4ax^(2)+2bx+a where a,b in R. For a=1 if y=f(x) is strictly increasing AA x in R then maximum range of values of b is (-oo,(1)/(3)](b)((1)/(3),oo)[(1)/(3),oo) (d) (-oo,oo)

Range of vlaues of f(x) is (A) (-oo, 3/4] (B) [ 3/4, oo) (C) [ 1/3, 3] (D) none of these

If e^x+e^(f(x))=e , then the range of f(x) is (-oo,1] (b) (-oo,1) (1, oo) (d) [1,oo)

If f(x)=(t+3x-x^2)/(x-4), where t is a parameter that has minimum and maximum, then the range of values of t is (0,4) (b) (0,oo) (-oo,4) (d) (4,oo)

If the function f(x)=2x^2-k x+5 is increasing on [1,\ 2] , then k lies in the interval (a) (-oo,\ 4) (b) (4,\ oo) (c) (-oo,\ 8) (d) (8,\ oo)

Let f(x) = cos x - (1 - (x^(2))/(2)) then f(x) is increasing in the interval a) (-oo, 1] b) [0, oo) c) (-oo, -1] d) (-oo, oo)

If e^(x)+e^(f(x))=e, then the range of f(x) is (-oo,1](b)(-oo,1)(1,oo)(d)[1,oo)

The function f(x)=cot^(-1)x+x increases in the interval (a) (1,\ oo) (b) (-1,\ oo) (c) (-oo,\ oo) (d) (0,\ oo)

If f(x)=(t+3x-x^(2))/(x-4), where t is a parameter that has minimum and maximum,then the range of values of t is (0,4)(b)(0,oo)(-oo,4)(d)(4,oo)

The domain of the function f(x)=1/(sqrt(|x|-x)) is: (A) (-oo,oo) (B) (0,oo (C) (-oo,""0) (D) (-oo,oo)"-"{0}