Home
Class 12
MATHS
" 12."(x^(3)-1)^((1)/(3))x^(5)...

" 12."(x^(3)-1)^((1)/(3))x^(5)

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=-(1)/(3)x^(3)+5x^(2)+12

int(2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx=(x^(p))/(q(x^(5)+x^(3)+1)^(r))+c , then p-q-r =

If f(x)=(x^(2))/(1.2)-(x^(3))/(2.3)+(x^(4))/(3.4)-(x^(5))/(4.5)+..oo then

If f(x)=(x^(2))/(1.2)-(x^(3))/(2.3)+(x^(4))/(3.4)-(x^(5))/(4.5)+..oo then

If x=11 , the value of x^(5)-12x^(4)+12x^(3)-12x^(2)+12x-1 is :

The integral int(2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx is equal to: (1)(-x^(5))/((x^(5)+x^(3)+1)^(2))+C(2)(x^(5)x^(3))/(2(x^(5)+x^(3)+1)^(2))+C(3)(x^(5))/(2(x^(5)+x^(3)+1)^(2))+C(4)(-x^(3)+x^(3))/(2(x^(5)+x^(3)+1)^(2))+C where C is an arbitrary constant.

If x=1+5^((1)/(3))+5^((2)/(3)) then find the value of x^(3)-3x^(2)-12x+6

int(2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx=

int(2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx=

The series expansion of log[(1 + x)^((1 + x))(1-x)^(1-x)] is (1) 2[(x^(2))/(1.2) + (x^(4))/(3.4)+(x^(6))/(5.6)+...] (2) [(x^(2))/(1.2) + (x^(4))/(3.4)+(x^(6))/(5.6)+...] (3) 2[(x^(2))/(1.2) + (x^(4))/(2.3)+(x^(6))/(3.4)+...] (4) 2[(x^(2))/(1.2) -(x^(4))/(2.3)+(x^(6))/(3.4)-...]