Home
Class 12
MATHS
Let (x^3 + x^5) ( 2 x^6 + 3 x^4 - 1)^20...

Let ` (x^3 + x^5) ( 2 x^6 + 3 x^4 - 1)^20 = a_0 x + a_1 x + a_2 x^2 + a_3 x^3..........+ a_n x^n` Then solve these questions:

Promotional Banner

Similar Questions

Explore conceptually related problems

If (1+2x +3x^2)^10 = a_0 +a_1x +a_2x^2 + ……+a_20x^20 then a_2/a_1 =

If (1 - x + x^2)^n = a_0 + a_1 x + a_2x^2 + ..... + a_(2n)x^(2n) then a_0 + a_2 + a_4 + ... + a_(2n) equals

Let (1 + x^2)^2 (1 + x)^n = A_0 +A_1 x+A_2 x^2 + ...... If A_0, A_1, A_2, are in A.P. then the value of n is

Let (1 + x^2)^2 (1 + x)^n = A_0 +A_1 x+A_2 x^2 + ...... If A_0, A_1, A_2, are in A.P. then the value of n is

Let (1 + x^2)^2 (1 + x)^n = A_0 +A_1 x+A_2 x^2 + ...... If A_0, A_1, A_2, are in A.P. then the value of n is

Let (1+x^2)^2 (1+x)^n= A_0 +A_1 x+A_2 x^2 + ...... If A_0, A_1, A_2,........ are in A.P. then the value of n is

If (1+x-3x^2)^2145 = a_0+a_1 x+a_2 x^2+... then a_0-a_1+a_2-.. ends with

let f(x)=a_0+a_1x^2+a_2x^4+............a_nx^(2n) where 0< a_0 < a_1 < a_3 ............< a_n then f(x) has

If (3 + 7x - 9x^2)^n = a_0 +a_1x + a_2 x^2 + ……+a_(2n)x^(2n) prove the a_0 +a_1 +a_2 + ……+a_(2n) = 1