Home
Class 12
MATHS
[" (1) "(10910^(2))/(10910^(4+10910))" (...

[" (1) "(10910^(2))/(10910^(4+10910))" (2) "(10910^(4)-10910^(3))/(10910^(4)-10010^(3))" (1)mbered "00,01,02,quad 49" .Then the probability that "],[" one ticket is selected at random from "50" theret is "8" ,given that the product of these digits is zero.eaual "],[" the sum of the digits on the selected ticket is "8" ,given that the product of these does "(4,-1),144" ,"],[[" (1) "(1)/(7)," (2) "(5)/(14)," (3) "(1)/(50)," (4) "(1)/(14)]]

Promotional Banner

Similar Questions

Explore conceptually related problems

One ticket is selected at random from 50 tickets numbered 00,01,02 …… 49 . Then the probability that the sum of the digits on the selected ticket is 8 , given that the product of these digits is zero , equals :

One ticket is selected at random from 50 tickets numbered 00, 01, 02, ……49. Then the probability that the sum of the digites on the selected ticket is 8, given that the product of these digits is zero, equals

One ticket is selected at random from 50 tickets numbered 00, 01, 02, ... , 49. Then the probability that the sum of the digits on the selected ticket is 8, given that the product of these digits is zero, equals:

One ticket is selected at random from 50 tickets numbered 00, 01, 02, ... , 49. Then the probability that the sum of the digits on the selected ticket is 8, given that the product of these digits is zero, equals

One ticket is selected at ransom form 50 tickets numbered 00,01,02,…,49. Then the probability that the sum of the digits on the selected ticket is 8, given that the product of these digits is zero, is

One ticket is selected at ransom form 50 tickets numbered 00,01,02,…,49. Then the probability that the sum of the digits on the selected ticket is 8, given that the product of these digits is zero, is

One ticket is selected at ransom form 50 tickets numbered 00,01,02,…,49. Then the probability that the sum of the digits on the selected ticket is 8, given that the product of these digits is zero, is