Home
Class 11
MATHS
If alpha satisfies properties a^3=1 and ...

If `alpha` satisfies properties `a^3=1` and `alpha^2+alpha+1=0` then `(4+5alpha^(334)+3alpha^(365))/(alpha-alpha^2)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha is a non-real root of x^(6)=1 then (alpha^(5)+alpha^(3)+alpha+1)/(alpha^(2)+1)=

If alpha is a non-real root of x^(6)-1=0 then (alpha^(5)+alpha^(3)+alpha+1)/(alpha^(2)+1)

If alpha is a non real root of the equation x^(6)-1=0 then (alpha^(2)+alpha^(3)+alpha^(4)+alpha^(5))/(alpha+1)

alpha=e^((2 pi)/(5)i)then1+alpha+alpha^(2)+alpha^(3)+alpha^(4)+2 alpha^(5)=

If alpha is a non real root of x^6=1 then (alpha^5+alpha^3+alpha+1)/(alpha^2+1)=

If alpha, beta are the roots of x^(2) + x + 3=0 then 5alpha+alpha^(4)+ alpha^(3)+ 3alpha^(2)+ 5beta+3=

If alpha, beta are the roots of x^(2) + x + 3=0 then 5alpha+alpha^(4)+ alpha^(3)+ 3alpha^(2)+ 5beta+3=

If alpha,beta are the roots of x^(2)+x+3=0 then 5 alpha+alpha^(4)+alpha^(3)+3 alpha^(2)+5 beta+3=