Home
Class 10
MATHS
[" An "BC^(2)=4(AD^(2)-AC^(2))" ."],[" 4...

[" An "BC^(2)=4(AD^(2)-AC^(2))" ."],[" 4.In a quadrilateral "ABCD,/_B=90^(@),AD^(2)=AB^(2)+BC^(2)+CD^(2)" ,provethat "/_ACD=90^(@)],[" 8.An aeroplane leaves an airport and flies due north at a speed of "1000km/hr" .At the same "],[" enter angther aprentance less "]

Promotional Banner

Similar Questions

Explore conceptually related problems

In a quadrilateral ABCD,/_B=90oAD^(2)=AB^(2)+BC^(2)+CD^(2), prove that /_ACD=90o

In a quadrilateral ABCD, /_B= 90^(@)" and "AD^(2)= AB^(2)+BC^(2)+CD^(2) . Prove that /_ACD= 90^(@) .

In a quadrilateral ABCD,/_B=90o. If AD^(2)=AB^(2)+BC^(2)+CD^(2) then prove that /_ACD=90o .

In a quadrilateral ABCD, angleB=90^(@) and AD^(2)= AB^(2) + BC^(2)+CD^(2) prove that angleACD= 90^(@) .

In a quadrilateral ABCD, angleB=90^(@) and AD^(2)= AB^(2) + BC^(2)+CD^(2) prove that angleACD= 90^(@) .

In a quadrilateral ABCD, lfloorB=90^(@) . If AD^(2)=AB^(2)+BC^(2)+CD^(2) , prove that lfloorACD=90^(@) .

In a quadrilateral ABCD, angleB = 90^0 , AD^2 = AB^2 + BC^2 + CD^2 . Prove that angle ACD = 90 ^0 .

In the figure angle B = 90^(@) , AD^(2) = AB^(2) + BC^(2) + CD^(2) . Prove angle ACD = 90^(@) .

In a quadrilateral ABCD,/_A+/_D=90^(@). Prove that AC^(2)+BD^(2)=AD^(2)+BC^(2)

In a quadrilateral ABCD, angleA+angleD=90^(@) . Prove that AC^(2)+BD^(2)=AD^(2)+BC^(2)