Home
Class 12
MATHS
I= int0^(-1) (t lnt)/sqrt(1-t^2) dt =...

`I= int_0^(-1) (t lnt)/sqrt(1-t^2) dt =`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1)t^(5)*sqrt(1-t^(2))*dt

int(1)/(sqrt(t))dt

I=int sqrt(1-t^(2))dt

int_(0)^(1)t^(2)sqrt(1-t)*dt

If y = int_(0)^(x) (t^(2))/(sqrt(t^(2)+1))dt then (dy)/(dx) at x=1 is

If x=int_0^(y) (dt)/(sqrt(1+9t^(2))) and (d^(2)y)/(dx^(2)) = ay , then a =

Let A = int_0^(1) e^(t)/(t+1) dt , then int_0^(1) (t.e^(t^(2)))/(t^(2)+1) dt =

int(1)/(sqrt(t)+1)dt

Evaluate the following: \int_{0}^1 t^5 sqrt (1-t^2) dt