Home
Class 12
MATHS
If veca and vecb are unit vectors, then ...

If `veca and vecb` are unit vectors, then find the greatest value of `|veca+vecb|+ |veca-vecb|` .

Promotional Banner

Similar Questions

Explore conceptually related problems

If veca and vecb are unit vectors, then the greatest value of |veca +vecb|+ |veca -vecb| is

If veca and vecb are unit vectors, then the greatest value of sqrt(3)|veca+ vecb|+|veca-vecb| is _________

If veca , vec b all are unit vector, then the greatest value of |veca +vecb| + |veca-vecb| is

If veca and vecb are unit vectors inclined at an angle theta , then the value of |veca-vecb| is

If veca and vecb are unit vectors inclined at an angle theta , then the value of |veca-vecb| is

If veca and vecb are any two unit vectors, then find the greatest postive integer in the range of (3|veca + vecb|)/2+2|veca-vecb|

If veca and vecb are any two unit vectors, then find the greatest postive integer in the range of (3|veca + vecb|)/2+2|veca-vecb|

If veca and vecb are any two unit vectors, then find the greatest postive integer in the range of (3|veca + vecb|)/2+2|veca-vecb|

If veca and vecb are any two unit vectors, then find the greatest postive integer in the range of (3|veca + vecb|)/2+2|veca-vecb|