Home
Class 12
MATHS
If vecu, vecv, vecw are non -coplanar v...

If `vecu, vecv, vecw` are non -coplanar vectors and `p,q,` are real numbers then the equality
`[3vecu p vecv p vecw]-[p vecv vecw qvecu]-[2vecw-qvecv qvecu]=0` holds for

Promotional Banner

Similar Questions

Explore conceptually related problems

If vecu, vecv, vecw are non-coplanar vectors and p,q are real numbers, then the equality [ 3 vecu, p vecv, p vecq]-[p vecv, vecq, q vecu] + [2 vecw, q vecv, q vecu]=0 holds for :

Prove that [ vecu vecv vecw ] + [ vecu vecw vecv] =0 .

If vecu, vecv, vecw are three vectors such that [vecu vecv vecw]=1 , then 3[vecu vecv vecw]-[vecv vecw vecu]-2[vecw vecv vecu]=

If vecu, vecv, vecw are three vectors such that [vecu vecv vecw]=1 , then 3[vecu vecv vecw]-[vecv vecw vecu]-2[vecw vecv vecu]=

If vecu, vecv and vecw are three non-coplanar vectors, then : (vecu + vecc- vecw). (vecu - vecv) xx (vecv-vecw) equals :

If vecu, vercv, vecw be three noncoplanar unit vectors and alpha,beta, gamma the angles between vecu and vecv, vecv and vecw,vecw and vecu respectively, vecx, vecy , vecz unit vector along the bisectors of the angles alpha, beta, gamma respectively. Prove that: [vecx xx vecy vecy xx vecz vecz xx vecx]=1/16[vecu vecv vecw]^(2) sec^(2) alpha/2 sec^(2) beta/2 sec^(2) gamma/2

vecu, vecv and vecw are three nono-coplanar unit vectors and alpha, beta and gamma are the angles between vecu and vecu, vecv and vecw and vecw and vecu , respectively and vecx , vecy and vecz are unit vectors along the bisectors of the angles alpha, beta and gamma. respectively, prove that [vecx xx vecy vecy xx vecz vecz xx vecx) = 1/16 [ vecu vecv vecw]^(2) sec^(2) alpha/2 sec^(2) beta/2 sec^(2) gamma/2 .

vecu, vecv and vecw are three nono-coplanar unit vectors and alpha, beta and gamma are the angles between vecu and vecu, vecv and vecw and vecw and vecu , respectively and vecx , vecy and vecz are unit vectors along the bisectors of the angles alpha, beta and gamma. respectively, prove that [vecx xx vecy vecy xx vecz vecz xx vecx) = 1/16 [ vecu vecv vecw]^(2) sec^(2) alpha/2 sec^(2) beta/2 sec^(2) gamma/2 .

If vecu, vecv, vecw are three non-coplanar vectors, the (vecu+vecv-vecw).(vecu-vecv)xx(vecv-vecw) equals