Home
Class 12
MATHS
lim(xrarr oo) (logx^n-[x])/([x]) where n...

`lim_(xrarr oo) (logx^n-[x])/([x])` where `n in N and [.]` denotes the greatest integer function, is

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr oo) (logx^(n)-[x])/([x]) , where n in N and [.] denotes the greatest integer function, is

lim_(x rarr oo) (log x)/([x]) , where [.] denotes the greatest integer function, is

lim_(xrarr oo) (logx)/([x]) , where [.] denotes the greatest integer function, is

lim_(xrarr oo) (logx)/([x]) , where [.] denotes the greatest integer function, is

lim_(xrarr1([x]+[x]) , (where [.] denotes the greatest integer function )

lim_(x->0) (lnx^n-[x])/[x], n in N where [x] denotes the greatest integer is

The value of lim_(x rarr oo)((sin)[x])/([x])(where[*] denotes the greatest integer function ) is

lim_(x rarr o+)(log x^(n)-[x])/([x]), n being a natural number and [x] denotes greatest integer function.

lim_(xrarr oo) (log[x])/(x) , where [x] denotes the greatest integer less than or equal to x, is

lim_(xrarr oo) (log[x])/(x) , where [x] denotes the greatest integer less than or equal to x, is