Home
Class 12
MATHS
Prove that lim(xrarr0) ((1+x)^(n) - 1)/(...

Prove that `lim_(xrarr0) ((1+x)^(n) - 1)/(x) = n`.

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xrarr0) ((x+1)^(5)-1)/(x)

lim_(xrarr0) ((x+1)^(5)-1)/(x)

Evaluate lim_(xrarr0)((1+x)^(n)-1)/(x)

Evalute lim_(xrarr0)((1-x)^n-1)/(x)

Evaluate : lim_(xrarr0)((1-x)^(n)-1)/(x)

lim_(xrarr0) (sqrt(1+x)-1)/(x)=?

Evalvate lim_(xrarr0)((1+x)^(4)-1)/(x).

lim_(xrarr0)((1+x)^(n)-1)/(x) is equal to

lim_(xrarr0)((1+x)^(n)-1)/(x) is equal to

Proved that lim_(xrarr0) (tanx)/x = 1