Home
Class 11
MATHS
lim(x->1) (log3 3x)^(logx 3)=...

`lim_(x->1) (log_3 3x)^(log_x 3)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of lim_(x to 1) (log_3 3x)^(log_x 3)

Evaluate lim_(x to oo) (log_(3)3x)^(log_(x)3).

Evaluate lim_(x to oo) (log_(3)3x)^(log_(x)3).

If lim_(xto0) (log (3+x)-log (3-x))/(x)=k , the value of k is

If lim_(xrarr0) (log (3+x)-log (3-x))/(x)=k , the value of k is

If lim_(xrarr0) (log (3+x)-log (3-x))/(x)=k , the value of k is

Evaluate lim_(x rarr-1)(log x^(2)-log((1)/(x^(4)))+log3)/(log((x^(3))/(-3)))

Evaluate: lim_(x rarr -1) (logx^(2)-log((1)/(x^(4)))+log3)/(log((x^(3))/(-3))) .