Home
Class 12
MATHS
[" If "1,alpha(1),alpha(2),alpha(3),alph...

[" If "1,alpha_(1),alpha_(2),alpha_(3),alpha_(4)" be the roots of "x^(5)-1=0," then the value of "(omega-alpha_(1))/(omega^(2)-alpha_(1))(omega-alpha_(2))/(omega^(2)-alpha_(2))(omega-alpha_(3))/(omega^(2)-alpha_(3))(omega-alpha_(4))/(omega^(2)-alpha_(2))],[" is.(uhere "omega" is imaginary cube root of unity.) "]

Promotional Banner

Similar Questions

Explore conceptually related problems

If 1,alpha_(1),alpha_(2),alpha_(3),alpha_(4) be the roots x^(5)-1=0 then value of -alpha_(2)(omega-alpha_(1))/(omega^(2)-alpha_(1))*(omega-alpha_(2))/(omega^(2)-alpha_(2))*(omega-alpha_(3))/(omega^(2)-alpha_(3))*(omega-alpha_(4))/(omega^(2)-alpha_(4)) is (where omega is imaginary cube root of unity)

If 1,alpha_1,alpha_2,alpha_3,alpha_4 be the roots x^5-1=0 , then value of [omega-alpha_1]/[omega^2-alpha_1].[omega-alpha_2]/[omega^2-alpha_2].[omega-alpha_3]/[omega^2-alpha_3].[omega-alpha_4]/[omega^2-alpha_4] is (where omega is imaginary cube root of unity)

If 1,alpha_1,alpha_2,alpha_3,alpha_4 be the roots x^5-1=0 , then value of [omega-alpha_1]/[omega^2-alpha_1].[omega-alpha_2]/[omega^2-alpha_2].[omega-alpha_3]/[omega^2-alpha_3].[omega-alpha_4]/[omega^2-alpha_4] is (where omega is imaginary cube root of unity)

If 1,alpha_1,alpha_2,alpha_3,alpha_4 be the roots x^5-1=0 , then value of [omega-alpha_1]/[omega^2-alpha_1].[omega-alpha_2]/[omega^2-alpha_2].[omega-alpha_3]/[omega^2-alpha_3].[omega-alpha_4]/[omega^2-alpha_4] is (where omega is imaginary cube root of unity)

If alpha_(0),alpha_(1),alpha_(2)----alpha_(n-1) be the nth roots of unity then the value of sum_(r=0)^(n-1)(alpha_(r))/(3-alpha_(r)) is

If alpha_(1),alpha_(2),alpha_(3),alpha_(4) are the roots of the equation x^(4)+(2-sqrt(3))x^(2)+2+sqrt(3)=0 then find the value of (1-alpha_(1))(1-alpha_(2))(1-alpha_(3))(1-alpha_(4))

If alpha_(1), alpha_(2), alpha_(3), alpha_(4) are the roots of the equation x^(4)+(2-sqrt(3))x^(2)+2+sqrt(3)=0 , then the value of (1-alpha_(1))(1-alpha_(2))(1-alpha_(3))(1-alpha_(4)) is

If 1,alpha_(1),alpha_(2),alpha_(3),alpha_(4) are the fifth roots of unity then sum_(i=1)^(4)(1)/(2-alpha_(i))=

If alpha_(1), alpha_(2), alpha_(3), alpha_(4) are the roots of the equation x^(4)+(2-sqrt(3))x^(2)+2+sqrt(3)=0 , then the value of (1-alpha_(1))(1-alpha_(2))(1-alpha_(3))(1-alpha_(4)) is :