Home
Class 20
MATHS
" If "y=e^(ax).cos bx," then prove that ...

" If "y=e^(ax).cos bx," then prove that "(d^(2)y)/(dx^(2))-2a(dy)/(dx)+(a^(2)+b^(2))y=0

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=e^(ax)cosbx , then prove that (d^(2)y)/(dx^(2))-2a(dy)/(dx)+(a^(2)+b^(2))y=0 .

If y=e^(ax) sin bx then prove that (d^2y)/(dx^(2))-2a(dy)/(dx)+(a^(2)+b^(2))y=0 .

If y=e^(ax)cosbx , then prove that : (d^(2)y)/(dx^(2))-2ady/dx+(a^(2)+b^(2))y=0 .

If y=e^(ax) sin be then prove that (d^2y)/(dx^(2))-2a(dy)/(dx)+(a^(2)+b^(2))y=0 .

If y=e^(x)sinx , then prove that (d^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0 ,

If y=e^(ax)cos bx, Show that (d^(2)y)/(dx^(2))-2a(dy)/(dx)+(a^(2)+b^(2))y=0

If y=e^(x)(sin x+cos x) prove that (d^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0

If y=e^(x)(sin x+cos x), prove that (d^(2)y)/(dx^(2))-2(dy)/(dx)=2y=0

If y=e^(x)(sin x+cos x) prove that (d^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0

IF y=e^(ax)sin bx , then prove that, (d^2y)/(dx^2)-2ady/dx+(a^2+b^2)y=0