Home
Class 12
MATHS
tan^(-1)(1-x^(2)-(1)/(x^(2)))+sin^(-1)(x...

tan^(-1)(1-x^(2)-(1)/(x^(2)))+sin^(-1)(x^(2)+(1)/(x^(2))-1)" (where "x!=0)" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

sin{tan^(-1)[(1-x^(2))/(2x)]+cos^(-1)[(1-x^(2))/(1+x^(2))]}=

tan^(- 1)((sqrt(1+a^2x^2)-1)/(a x)) where x!=0, is equal to

tan^(- 1)((sqrt(1+a^2x^2)-1)/(a x)) where x!=0, is equal to

tan^(- 1)((sqrt(1+a^2x^2)-1)/(a x)) where x!=0, is equal to

2 tan ^(-1)""(1+x)/(1-x)+sin ^(-1)""(1-x^(2))/(1+x^(2))

If x_(1)=2tan^(-1)((1+x)/(1-x)), x_(2)=sin^(-1)((1-x^(2))/(1+x^(2)))," where "x in (0, 1)," then "x_(1)+x_(2) is equal to

simplify 2tan^(-1)((1+x)/(1-x))+sin^(-1)((1-x^(2))/(1+x^(2)))

tan ^ (-1) ((1-x ^ (2)) / (2x)) + sin ^ (-1) ((2x) / (1 + x ^ (2))) =

If 0lexle1 then tan{1/2sin^(-1)((2x)/(1+x^(2)))+1/2cos^(-1)((1-x^(2))/(1+x^(2)))} is equal to

If u=sin^(-1)((2x)/(1+x^(2))) and v=tan^(-1)((2x)/(1-x^(2))), where '-1