Home
Class 12
MATHS
" If "cos^(-1)(2x^(2)-1)=2 pi-2cos^(-1)x...

" If "cos^(-1)(2x^(2)-1)=2 pi-2cos^(-1)x," then "

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos^(-1) x +cos^(-1)y +cos^(-1)z =pi , then prove that x^(2)+y^(2)+z^(2)+2xyz=1 .

If cos^(-1)x + cos^(-1)y + cos^(-1)z = pi , then x^(2) + y^(2) + z^(2) + 2xyz is :

If Cos^(-1)x+Cos^(-1)y+Cos^(-1)z=pi,"then "x^(2)+y^(2)+z^(2)+2xyz=

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , prove that x^(2)+y^(2)+z^(2)+2xyz=1

If cos^(-1)x+cos^(-1)y+cos^(-1)=pi, prove that x^(2)+y^(2)+z^(2)+2xyz=1

Statement -1: if -1lexle1 then sin^(-1)(-x)=-sin^(-1)x and cos^(-1)(-x)=pi-cos^(-1)x Statement-2: If -1lexlex then cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))= 2cos^(-1)sqrt((1+x)/(2))

Statement -1: if -1lexle1 then sin^(-1)(-x)=-sin^(-1)x and cos^(-1)(-x)=pi-cos^(-1)x Statement-2: If -1lexlex then cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))= 2cos^(-1)sqrt((1+x)/(2))

The sum of the maximum and the minimum values of 2(cos^(-1)x)^(2)-pi cos^(-1) x+(pi^(2))/(4) is

If cos^(-1) x + cos^(-1) y + cos^(-1) z = pi" , prove that " x^(2) + y^(2)+ z^(2) + 2xyz = 1 .

If cos^(-1) x + cos^(-1) y + cos^(-1) z = pi , prove that x^(2) + y^(2) + z^(2) + 2xyz = 1