Home
Class 12
MATHS
[" Number of integral ordered pairs "(a,...

[" Number of integral ordered pairs "(a,b)" for which "sin^(-1)(1+b+b^(2)+...oo)+cos^(-1)(a-(a^(2))/(3)+(a^(3))/(9)-...+oo)=(pi)/(2)" is "],[[" (A) "0," (B) "4," (C) "9," (D) Infinitely many "]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Number of ordered pairs (a,b) for which sin^(-1)(1+b+b^(2)+...oo)+cos^(-1)(a-(a^(2))/(3)+(a^(4))/(9)+...oo)=(pi)/(2) is (A) 0(B)4(C)9(D) Infinite

Number of ordered pairs (a,b) for which sin^(-1)(1+b+b^2+..oo)+cos^(-1)(a-a^2/3+a^4/9+..oo)=pi/2 is (A) 0 (B) 4 (C) 9 (D) Infinite

If sin^(-1)(a-(a^(2))/3+(a^(3))/9+…..)+cos^(-1)(1+b+b^(2)=……..)=(pi)/2 then

If sin^(-1)(a-a^(2)/3+a^(3)/9+…..)+cos^(-1)(1+b+b^(2)+…..)=pi/2 , then

If sin^(-1)(a-a^2/3+a^3/9-...)+cos^(-1)(1+b+b^2+...)=pi/2 then find a and b

If sin^(-1)(a-a^2/3+a^3/9-...)+cos^(-1)(1+b+b^2+...)=pi/2 then find a and b

If sin^(-1)(a-a^2/3+a^3/9-...)+cos^(-1)(1+b+b^2+...)=pi/2 then find a and b

(1+3/(1!) +9/(2!) +(27)/(3!) + .....oo) (1+9/(1!) +(81)/(2!)+(729)/(3!)+ .....oo) =