Home
Class 12
MATHS
A=int1^(sintheta) t/(1+t^2) dt; B= int1^...

`A=int_1^(sintheta) t/(1+t^2) dt; B= int_1^(cosectheta) 1/(t(1+t^2))dt` then find the value of the given determinant

Promotional Banner

Similar Questions

Explore conceptually related problems

If A = int_(1)^(sintheta) (t)/(1 + r^(2)) dt and B = int_(1)^("cosec"theta) (1)/(t(1 +t^(2))) dt , then the value of the determinant |(A,A^(2),B),(e^(A +B),B^(2),-1),(1,A^(2) + B^(2) ,-1)| is

If A = int_(1)^(sintheta) (t)/(1 + r^(2)) dt and B = int_(1)^("cosec"theta) (1)/(t(1 +t^(2))) dt , then the value of the determinant |(A,A^(2),B),(e^(A +B),B^(2),-1),(1,A^(2) + B^(2) ,-1)| is

int1/(sqrtt(1+t))dt

int_(1)^(a)(ln t)/(t)dt

If int_0^1(e^t)/(1+t)dt=a , then find the value of int_0^1(e^t)/((1+t)^2)dt in terms of a .

If int_0^1(e^t)/(1+t)dt=a , then find the value of int_0^1(e^t)/((1+t)^2)dt in terms of a .

If int_0^xf(t) dt=x+int_x^1 tf(t)dt, then the value of f(1)

If int_0^xf(t) dt=x+int_x^1 tf(t)dt, then the value of f(1)

If I_(1)=int_(1//e)^(tanx)(t)/(1+t^(2))dtandI_(2)=int_(1//e)^(cotx)(dt)/(t(1+t^(2))) then the values of I_(1)+I_(2) is