Home
Class 12
MATHS
" The value of integral "int(0)^((pi)/(3...

" The value of integral "int_(0)^((pi)/(3))(1)/(1+sqrt(tan x))dx" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)(1)/(1+sqrt(tan x))dx=

The value of the integral int_(pi//6)^(pi//3) (1)/(1+sqrt(tan x))dx is

Statement-1: The value of the integral int_(pi//6)^(pi//3) (1)/(sqrt(tan)x)dx is equal to (pi)/(6) Statement-2: int_(a)^(b) f(x)dx=int_(a)^(b) f(a+b-x)dx

Statement-1: The value of the integral int_(pi//6)^(pi//3) (1)/(1+sqrt(tan)x)dx is equal to (pi)/(6) Statement-2: int_(a)^(b) f(x)dx=int_(a)^(b) f(a+b-x)dx

Evaluate :int_(0)^((pi)/(2))(dx)/(1+sqrt(tan x))

Prove that the value of the integral int_(pi//6)^(pi//3) (dx)/(1+sqrt(cot x)) is pi//6 .

The value of the definite integral int_(0)^((pi)/(3))ln(1+sqrt(3)tan x)dx equals -

int_(pi//6)^(pi//3) (dx)/(1 + sqrt(tan x)) =