Home
Class 12
MATHS
" If "y=tan^(-1)((3x-x^(3))/(1-3x^(2))),...

" If "y=tan^(-1)((3x-x^(3))/(1-3x^(2))),-(1)/(sqrt(3))

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) in the following : y = tan^(-1)((3x-x^(3))/(1-3x^(2))), -(1)/(sqrt(3)) lt x lt (1)/(sqrt(3)) .

Find (dy)/(dx) in the following : y = tan^(-1)((3x-x^(3))/(1-3x^(2))), -(1)/(sqrt(3)) lt x lt (1)/(sqrt(3)) .

Find (dy)/(dx) in the following : y = tan^(-1)((3x-x^(3))/(1-3x^(2))), -(1)/(sqrt(3)) lt x lt (1)/(sqrt(3)) .

Find quad (dy)/(dx) in the following: y=tan^(-1)((3x-x^(3))/(1-3x^(2))),-(1)/(sqrt(3))

Differentiate tan^(-1)((3x-x^(3))/(1-3x^(2))), if x<-(1)/(sqrt(3))

Differentiate tan^(-1)((3x-x^(3))/(1-3x^(2))), if -(1)/(sqrt(3)) (1)/(sqrt(3))(3)*xlt1/sqrt(3)

tan^(-1)x+(tan^(-1)(2x))/(1-x^(2))=tan^(-1)((3x-x^(3))/(1-3x^(2))),|x|<(1)/(sqrt(3))

Prove that tan^(-1)x+"tan"^(-1)(2x)/(1-x^(2))=tan^(-1)((3x-x^(3))/(1-3x^(2))),|x|lt(1)/(sqrt(3))