Home
Class 12
MATHS
[" The integral "int(-(1)/(2))^((1)/(2))...

[" The integral "int_(-(1)/(2))^((1)/(2))([x]+ln((1+x)/(1-x)))" dx equals,where I ldenotes greatest integer function "],[[" (A) "-(1)/(2)," (B) "0," (C) "1," (D) "2ln((1)/(2))]]

Promotional Banner

Similar Questions

Explore conceptually related problems

The integral int_(-(1)/(2))^((1)/(2))([x]+log((1+x)/(1-x)))*dx equals

The integral int_(-1//2)^(1//2) ([x] + l_n ((1 + x)/(1 - x)))dx equals :

The integral int_(-1/2)^(1/2) ([x]+1n((1+x)/(1-x)))dx is equal to (where [.] represents the greatest integer function)

The integral int_(-1/2)^(1/2) ([x]+1n((1+x)/(1-x)))dx is equal to (where [.] represents the greatest integer function)

The integral int_(-1/2)^(1/2) ([x]+1n((1+x)/(1-x)))dx is equal to (where [.] represents the greatest integer function)

The tangent int_(-1/2)^(1/2)([x]+ln((1+x)/(1-x)))\ dx equals, where [\ ] denotes greatest integer function a. -1/2 b. \ 0 c. \ 1 d. 2ln\ (1/2)

The value of int_(-1)^(1)[|x|](1)/(1+e^(-(1)/(x)))dx where [.] denotes the greatest integer function is

the integral int_(0)^((1)/(2))(ln(1+2x))/(1+4x^(2))dx equals