Home
Class 12
MATHS
y=tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))...

y=tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))," where "-1

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = tan^(-1) ((sqrt(1+x^(2)) -sqrt(1-x^(2)))/(sqrt(1+x^(2)) + sqrt(1-x^(2)))) then dy/dx =

If y=Tan^""(-1)((sqrt((1+x^(2)))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2)))) then find dy/dx .

If y="tan"^(-1)(sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2))) , then the value of (dy)/(dx) is -

Differentiate y=tan^(-1).(sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2)))

y=Tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2)))) then find (8ddy)/(8ddx)

If y=tan^(-1)[(sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2)))] for 0<|x|<1 ,find (dy)/(dx)