Home
Class 11
MATHS
sin^(-1)(2x sqrt(1-x^(2)))" to "sin^(-1)...

sin^(-1)(2x sqrt(1-x^(2)))" to "sin^(-1)x" for "1>=x>(1)/(sqrt(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

(sin^(-1)x)/(sqrt(1-x^(2))

(sin^(-1)x)/(sqrt(1-x^(2))

Prove that : sin^(-1) (2x sqrt(1-x^(2)))= 2 sin^(-1) x, - 1/(sqrt(2)) le x le 1/(sqrt(2))

Prove that : sin^(-1) (2x sqrt(1-x^(2)) ) = 2 sin^(-1) x , -1/(sqrt(2))le x le 1/(sqrt(2)

Prove the following: sin^(-1)(2xsqrt(1-x^(2)))=2sin^(-1)x,-1/(sqrt(2))lexle1/(sqrt(2))

sin^(-1)x+sin^(-1)sqrt(1-x^(2))

Differentiate sin^(-1)(2x sqrt(1-x^(2))) with respect to x, if '1/(sqrt(2))

Differentiate tan^(-1)((x)/(sqrt(1-x^(2)))) with respect to sin^(-1)(2x sqrt(1-x^(2))), if -(1)/(sqrt(2))

Show that, sin^(-1)(2xsqrt(1-x^(2)))=2sin^(-1)x,-1/sqrt2lexle1/sqrt2

Differentiate sin^(-1)(2x sqrt(1-x^(2))) with respect to x, if ^(*)-1/(sqrt(2))