For a process to be spontaneous, `DeltaG` must be………… .
For a process to be spontaneous, `DeltaG` must be………… .
Similar Questions
Explore conceptually related problems
Assertion (A): The thermodynamic factor which determines the spontaneity of a process is the free energy. For a process to be spontaneous the free energy must be-ve. Reason (R ) : The change in free energy is related to the change in a process must always be positive if its is spontaneous.
Assertion (A): The thermodynamic factor which determines the spontaneity of a process is the free energy. For a process to be spontaneous the free energy must be-ve. Reason (R ) : The change in free energy is related to the change in a process must always be positive if its is spontaneous.
(A): For a process to be spontaneous, the change in free energy must be negative. (R): The change in entropy for a process must always be positive if it is spontaneous.
Write the condition of temperature for a process to be spontaneous whose DeltaH and DeltaS values are positive. [Hint: DeltaG = DeltaH - TDeltaS]
Statement: The thermodynamics functions which determines the spontaneity of a process is the free energy. For a process to be spontaneous, the change in free energy must be negative. Explanation:The change in free energy is related to the change in enthalpy and change in entropy. the change in entropy for a process must be always positive if it is spontaneous.
Dependence of Spontaneity on Temperature: For a process to be spontaneous , at constant temperature and pressure , there must be decrease in free energy of the system in the direction of the process , i.e. DeltaG_(P.T) lt 0. DeltaG_(P.T) =0 implies the equilibrium condition and DeltaG_(P.T) gt 0 corresponds to non- spontaneity. Gibbs- Helmholtz equation relates the free energy change to the enthalpy and entropy changes of the process as : " "DeltaG_(P.T) = DeltaH-TDeltaS" ""..."(1) The magnitude of DeltaH does not change much with the change in temperature but the entropy factor TDeltaS change appreciably . Thus, spontaneity of a process depends very much on temperature. For endothermic process, both DeltaH and DeltaS are positive . The energy factor, the first factor of equation, opposes the spontaneity whereas entorpy factor favours it. At low temperature the favourable factor TDeltaS will be small and may be less than DeltaH, DeltaG will have positive value indicated the nonspontaneity of the process. On raising temperature , the factor TDeltaS Increases appreciably and when it exceeds DeltaH, DeltaG would become negative and the process would be spontaneous . For an expthermic process, both DeltaH and DeltaS would be negative . In this case the first factor of eq.1 favours the spontaneity whereas the second factor opposes it. At high temperature , when T DeltaS gt DeltaH, DeltaG will have positive value, showing thereby the non-spontaneity fo the process . However , on decreasing temperature , the factor , TDeltaS decreases rapidly and when TDeltaS lt DeltaH, DeltaG becomes negative and the process occurs spontaneously. Thus , an exothermic process may be spontaneous at low temperature and non-spontaneous at high temperature. A reaction has a value of DeltaH =-40 Kcal at 400 k cal mol^(-1) . The reaction is spontaneous, below this temperature , it is not . The values fo DeltaG and DeltaS at 400 k are respectively
Dependence of Spontaneity on Temperature: For a process to be spontaneous , at constant temperature and pressure , there must be decrease in free energy of the system in the direction of the process , i.e. DeltaG_(P.T) lt 0. DeltaG_(P.T) =0 implies the equilibrium condition and DeltaG_(P.T) gt 0 corresponds to non- spontaneity. Gibbs- Helmholtz equation relates the free energy change to the enthalpy and entropy changes of the process as : " "DeltaG_(P.T) = DeltaH-TDeltaS" ""..."(1) The magnitude of DeltaH does not change much with the change in temperature but the entropy factor TDeltaS change appreciably . Thus, spontaneity of a process depends very much on temperature. For endothermic process, both DeltaH and DeltaS are positive . The energy factor, the first factor of equation, opposes the spontaneity whereas entorpy factor favours it. At low temperature the favourable factor TDeltaS will be small and may be less than DeltaH, DeltaG will have positive value indicated the nonspontaneity of the process. On raising temperature , the factor TDeltaS Increases appreciably and when it exceeds DeltaH, DeltaG would become negative and the process would be spontaneous . For an expthermic process, both DeltaH and DeltaS would be negative . In this case the first factor of eq.1 favours the spontaneity whereas the second factor opposes it. At high temperature , when T DeltaS gt DeltaH, DeltaG will have positive value, showing thereby the non-spontaneity fo the process . However , on decreasing temperature , the factor , TDeltaS decreases rapidly and when TDeltaS lt DeltaH, DeltaG becomes negative and the process occurs spontaneously. Thus , an exothermic process may be spontaneous at low temperature and non-spontaneous at high temperature. A reaction has a value of DeltaH =-40 Kcal at 400 k cal mol^(-1) . The reaction is spontaneous, below this temperature , it is not . The values fo DeltaG and DeltaS at 400 k are respectively
Dependence of Spontaneity on Temperature: For a process to be spontaneous , at constant temperature and pressure , there must be decrease in free energy of the system in the direction of the process , i.e. DeltaG_(P.T) lt 0. DeltaG_(P.T) =0 implies the equilibrium condition and DeltaG_(P.T) gt 0 corresponds to non- spontaneity. Gibbs- Helmholtz equation relates the free energy change to the enthalpy and entropy changes of the process as : " "DeltaG_(P.T) = DeltaH-TDeltaS" ""..."(1) The magnitude of DeltaH does not change much with the change in temperature but the entropy factor TDeltaS change appreciably . Thus, spontaneity of a process depends very much on temperature. For endothermic process, both DeltaH and DeltaS are positive . The energy factor, the first factor of equation, opposes the spontaneity whereas entorpy factor favours it. At low temperature the favourable factor TDeltaS will be small and may be less than DeltaH, DeltaG will have positive value indicated the nonspontaneity of the process. On raising temperature , the factor TDeltaS Increases appreciably and when it exceeds DeltaH, DeltaG would become negative and the process would be spontaneous . For an expthermic process, both DeltaH and DeltaS would be negative . In this case the first factor of eq.1 favours the spontaneity whereas the second factor opposes it. At high temperature , when T DeltaS gt DeltaH, DeltaG will have positive value, showing thereby the non-spontaneity fo the process . However , on decreasing temperature , the factor , TDeltaS decreases rapidly and when TDeltaS lt DeltaH, DeltaG becomes negative and the process occurs spontaneously. Thus , an exothermic process may be spontaneous at low temperature and non-spontaneous at high temperature. The enthalpy change for a certain rection at 300 K is -15.0 K cal mol^(-1) . The entropy change under these conditions is -7.2 cal K^(-1)mol^(-1) . The free energy change for the reaction and its spontaneous/ non-spontaneous character will be
Dependence of Spontaneity on Temperature: For a process to be spontaneous , at constant temperature and pressure , there must be decrease in free energy of the system in the direction of the process , i.e. DeltaG_(P.T) lt 0. DeltaG_(P.T) =0 implies the equilibrium condition and DeltaG_(P.T) gt 0 corresponds to non- spontaneity. Gibbs- Helmholtz equation relates the free energy change to the enthalpy and entropy changes of the process as : " "DeltaG_(P.T) = DeltaH-TDeltaS" ""..."(1) The magnitude of DeltaH does not change much with the change in temperature but the entropy factor TDeltaS change appreciably . Thus, spontaneity of a process depends very much on temperature. For endothermic process, both DeltaH and DeltaS are positive . The energy factor, the first factor of equation, opposes the spontaneity whereas entorpy factor favours it. At low temperature the favourable factor TDeltaS will be small and may be less than DeltaH, DeltaG will have positive value indicated the nonspontaneity of the process. On raising temperature , the factor TDeltaS Increases appreciably and when it exceeds DeltaH, DeltaG would become negative and the process would be spontaneous . For an expthermic process, both DeltaH and DeltaS would be negative . In this case the first factor of eq.1 favours the spontaneity whereas the second factor opposes it. At high temperature , when T DeltaS gt DeltaH, DeltaG will have positive value, showing thereby the non-spontaneity fo the process . However , on decreasing temperature , the factor , TDeltaS decreases rapidly and when TDeltaS lt DeltaH, DeltaG becomes negative and the process occurs spontaneously. Thus , an exothermic process may be spontaneous at low temperature and non-spontaneous at high temperature. The enthalpy change for a certain rection at 300 K is -15.0 K cal mol^(-1) . The entropy change under these conditions is -7.2 cal K^(-1)mol^(-1) . The free energy change for the reaction and its spontaneous/ non-spontaneous character will be
Dependence of Spontaneity on Temperature: For a process to be spontaneous , at constant temperature and pressure , there must be decrease in free energy of the system in the direction of the process , i.e. DeltaG_(P.T) lt 0. DeltaG_(P.T) =0 implies the equilibrium condition and DeltaG_(P.T) gt 0 corresponds to non- spontaneity. Gibbs- Helmholtz equation relates the free energy change to the enthalpy and entropy changes of the process as : " "DeltaG_(P.T) = DeltaH-TDeltaS" ""..."(1) The magnitude of DeltaH does not change much with the change in temperature but the entropy factor TDeltaS change appreciably . Thus, spontaneity of a process depends very much on temperature. For endothermic process, both DeltaH and DeltaS are positive . The energy factor, the first factor of equation, opposes the spontaneity whereas entorpy factor favours it. At low temperature the favourable factor TDeltaS will be small and may be less than DeltaH, DeltaG will have positive value indicated the nonspontaneity of the process. On raising temperature , the factor TDeltaS Increases appreciably and when it exceeds DeltaH, DeltaG would become negative and the process would be spontaneous . For an expthermic process, both DeltaH and DeltaS would be negative . In this case the first factor of eq.1 favours the spontaneity whereas the second factor opposes it. At high temperature , when T DeltaS gt DeltaH, DeltaG will have positive value, showing thereby the non-spontaneity fo the process . However , on decreasing temperature , the factor , TDeltaS decreases rapidly and when TDeltaS lt DeltaH, DeltaG becomes negative and the process occurs spontaneously. Thus , an exothermic process may be spontaneous at low temperature and non-spontaneous at high temperature. For the reaction at 298 K ,2A + B rarr C DeltaH =100 kcal and DeltaS=0.050 kcal K^(-1) . If DeltaH and DeltaS are assumed to be constant over the temperature range, above what temperature will the reaction become spontaneous?
Recommended Questions
- For a process to be spontaneous, DeltaG must be………… .
Text Solution
|
- Assertion (A): The thermodynamic factor which determines the spontanei...
Text Solution
|
- For a process to be spontaneous, DeltaG must be………… .
Text Solution
|
- A process must be spontaneous (feasible) if:
Text Solution
|
- प्रक्रम, A + B rarr C + D के लिए DeltaG धनात्मक है । इस प्रक्रम की स्व...
Text Solution
|
- Fill in the blanks by putting appropriate choices. During adsorption t...
Text Solution
|
- What is the value of DeltaG for a spontaneous process?
Text Solution
|
- What is a spontaneous process? Write the criteria for spontaneity of a...
Text Solution
|
- Which one of the following relation or expression is true for a sponta...
Text Solution
|