Home
Class 12
MATHS
If y = 1 +(1)/(x) +(1)/(x^(2)) + (1)/(x^...

If `y = 1 +(1)/(x) +(1)/(x^(2)) + (1)/(x^(3)) + ……..+oo` with `|x| gt 1` then `(dy)/(dx)` is .

A

`(x^(2))/(y^(2))`

B

`x^(2)y^(2)`

C

`(y^(2))/(x^(2))`

D

`-(y^(2))/(x^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the derivative \( \frac{dy}{dx} \) for the given series: \[ y = 1 + \frac{1}{x} + \frac{1}{x^2} + \frac{1}{x^3} + \ldots \] ### Step 1: Identify the series as a geometric series The series can be recognized as an infinite geometric series where: - The first term \( a = 1 \) - The common ratio \( r = \frac{1}{x} \) ### Step 2: Use the formula for the sum of an infinite geometric series The sum of an infinite geometric series is given by the formula: \[ S = \frac{a}{1 - r} \] For our series: \[ y = \frac{1}{1 - \frac{1}{x}} \quad \text{(since } |x| > 1\text{)} \] ### Step 3: Simplify the expression for \( y \) Substituting the values of \( a \) and \( r \): \[ y = \frac{1}{1 - \frac{1}{x}} = \frac{1}{\frac{x - 1}{x}} = \frac{x}{x - 1} \] ### Step 4: Differentiate \( y \) with respect to \( x \) Now, we need to differentiate \( y \): \[ y = \frac{x}{x - 1} \] Using the quotient rule for differentiation, where \( u = x \) and \( v = x - 1 \): \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] Calculating \( \frac{du}{dx} \) and \( \frac{dv}{dx} \): - \( \frac{du}{dx} = 1 \) - \( \frac{dv}{dx} = 1 \) Substituting into the quotient rule: \[ \frac{dy}{dx} = \frac{(x - 1)(1) - (x)(1)}{(x - 1)^2} = \frac{x - 1 - x}{(x - 1)^2} = \frac{-1}{(x - 1)^2} \] ### Step 5: Final expression for \( \frac{dy}{dx} \) Thus, we have: \[ \frac{dy}{dx} = -\frac{1}{(x - 1)^2} \] ### Step 6: Express \( \frac{dy}{dx} \) in terms of \( y \) From our earlier expression for \( y \): \[ y = \frac{x}{x - 1} \implies x - 1 = \frac{x}{y} \implies x = y(x - 1) + 1 \] Substituting \( x - 1 = \frac{x}{y} \) into \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = -\frac{1}{\left(\frac{x}{y}\right)^2} = -\frac{y^2}{x^2} \] ### Conclusion The final answer for \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = -\frac{y^2}{x^2} \]

To solve the problem, we need to find the derivative \( \frac{dy}{dx} \) for the given series: \[ y = 1 + \frac{1}{x} + \frac{1}{x^2} + \frac{1}{x^3} + \ldots \] ### Step 1: Identify the series as a geometric series The series can be recognized as an infinite geometric series where: - The first term \( a = 1 \) - The common ratio \( r = \frac{1}{x} \) ...
Promotional Banner

Topper's Solved these Questions

  • PRACTICE SET 10

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PAPER 2 (MATHEMATICS)|50 Videos
  • PRACTICE SET 12

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Paper 2 (Mathematics)|50 Videos

Similar Questions

Explore conceptually related problems

If y=1+(1)/(x)+(1)/(x^(2))+(1)/(x^(3))+... to oo with |x|>1 then (dy)/(dx)=

If y = x + (1)/(x + (1)/( x +...oo)) then (dy)/(dx) =

(dy)/(dx)+(x)/(1+x^(2))y=(1)/(2x(1+x^(2)))

y=(1+x)/(1-x) then (dy)/(dx)

If y =tan ^(-1)((x ^(1//3) -a^(1//3))/(1+x ^(1//3)a ^(1//3))), x gt 0, a gt 0, then (dy)/(dx) is:

(y-x(dy)/(dx))=3(1-x^(2)(dy)/(dx))

Find (dy)/(dx) ,if y=(x^(2)+1)(x^(2)-1)

if y = x + x^(2) + x^(3) + …oo, where |x| lt 1, then for |y| lt 1, (dx)/(dy) is equal to

dy/dx - (2y)/(x+1) = (x+1)^3

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-PRACTICE SET 11 -PAPER 2 (MATHEMATICS )
  1. If in a trial the probability of success is twice the probability of f...

    Text Solution

    |

  2. int(1)^(x) (log(x^(2)))/(x) dx is equal to

    Text Solution

    |

  3. If y = 1 +(1)/(x) +(1)/(x^(2)) + (1)/(x^(3)) + ……..+oo with |x| gt 1...

    Text Solution

    |

  4. The equation of second degree x^2+2sqrt2x+2y^2+4x+4sqrt2y+1=0 represen...

    Text Solution

    |

  5. If f(x) = log ((1+x)/(1-x)), where -1 lt x lt 1 then f((3x+x^(2))/(1+3...

    Text Solution

    |

  6. The equation of circle which touches X and Y-axes at the points (1, 0)...

    Text Solution

    |

  7. The length of the common chord of the two circles x^2+y^2-4y=0 and x^2...

    Text Solution

    |

  8. The distance between the directices of the hyperboltic x = 8 sec t...

    Text Solution

    |

  9. The eccentricity of the ellipse 25x^(2) + 16y^(2) - 150 x - 175 = 0...

    Text Solution

    |

  10. If O is the original and A is the point (a,b,c) then the equatio...

    Text Solution

    |

  11. Find the equation of a plane which passes through the point (3, 2, ...

    Text Solution

    |

  12. The value of cos^(-1) (cos 12) - sin^(-1)(sin 14) is

    Text Solution

    |

  13. If one side of a triangle is double the other, and the angles on op...

    Text Solution

    |

  14. The most general solution of theta satisfying the equations sintheta=s...

    Text Solution

    |

  15. The function f(x)=tan^(-1)(sinx+cosx) is an increasing function in (-p...

    Text Solution

    |

  16. Let f(x) be given that f(x)={{:(,x,"if x is rational"),(,1-x,"if x is ...

    Text Solution

    |

  17. If alpha = sin^(-1)sqrt(3)/(2)+sin^(-1)1/3 , beta =cos ^(-1)sqrt(3)/(2...

    Text Solution

    |

  18. In DeltaABC , the value of (cotA/2cotB/2-1)/(cotA/2cotB/2) is

    Text Solution

    |

  19. Write the value of the derivative of f(x)=|x-1|+|x-3| at x=2 .

    Text Solution

    |

  20. If tangent tto the curve x=at^(2),y=2at is perpendicular to X-axis, th...

    Text Solution

    |