Home
Class 11
MATHS
" In any triangle,if "(a^(2)-b^(2))/(a^(...

" In any triangle,if "(a^(2)-b^(2))/(a^(2)+b^(2))=(sin(A-B))/(sin(A+B))" then the triangle is : "

Promotional Banner

Similar Questions

Explore conceptually related problems

In any triangle.i(a^(2)-b^(2))/(a^(2)+b^(2))=(sin(A-B))/(sin(A+B)), then prove that the triangle is either right angled or isosceles.

If in a DeltaABC, (a^(2)-b^(2))/(a ^(2)+b^(2))=(sin (A-B))/(sin (A+B)), then the triangle is

If in a triangle ABC, (a^(2)-b^(2))/(a^(2)+b^(2)) = sin(A-B)/sin(A+B) the triangle is

In any triangle. if(a^2-b^2)/(a^2+b^2)=("sin"(A-B))/("sin"(A+B)) , then prove that the triangle is either right angled or isosceles.

In any triangle. if(a^2-b^2)/(a^2+b^2)=("sin"(A-B))/("sin"(A+B)) , then prove that the triangle is either right angled or isosceles.

In any triangle. if(a^2-b^2)/(a^2+b^2)=("sin"(A-B))/("sin"(A+B)) , then prove that the triangle is either right angled or isosceles.

In any triangle. if(a^2-b^2)/(a^2+b^2)=("sin"(A-B))/("sin"(A+B)) , then prove that the triangle is either right angled or isosceles.

In any triangle. if(a^2-b^2)/(a^2+b^2)=("sin"(A-B))/("sin"(A+B)) , then prove that the triangle is either right angled or isosceles.