Home
Class 12
MATHS
[" If "x(1),x(2),x(3),x(4)" are roots of...

[" If "x_(1),x_(2),x_(3),x_(4)" are roots of the "],[" quadratic equation "x^(4)-x^(3)sin2 beta+],[x^(2)cos2 beta-x cos beta-sin beta=0" then "],[tan^(-1)x_(1)+tan^(-1)x_(2)+tan^(-1)x_(3)+tan^(-1)],[x_(4)=],[" 1) "Pi],[" 2) "pi/2-beta],[" 3) "Pi-beta],[" 4) "-beta]

Promotional Banner

Similar Questions

Explore conceptually related problems

If x_(1),x_(2),x_(3),x_(4) are the roots of the equation x^(4)-x^(3)sin2 beta+x^(2)*cos2 beta-x cos beta-sin beta=0, then tan^(-1)x_(1)+tan^(-1)x_(2)+tan^(-1)x_(3)+tan^(-1)x_(4) is equal to

If x_(1),x_(2),x_(3),andx_(4) are the roots of the equations x^(4)-x^(3)sin2 beta+x^(2)cos2 beta-x cos beta-sin beta=0, prove that tan^(-1)x_(1)+tan^(-1)x_(2)+tan^(-1)x_(3)+tan^(-1)x_(4)=n pi+((pi)/(2))-beta, where n is an integer.

If x_1,x_2, x_3, x_4 are the roots of the equation x^4-x^3 sin2 beta+ x^2.cos2 beta-xcos beta-sin beta=0 , then tan^-1x_1+tan^-1x_2+tan^-1x_3+tan^-1x_4 is equal to

If x_1,x_2, x_3, x_4 are the roots of the equation x^4-x^3 sin2 beta+ x^2.cos2 beta-xcos beta-sin beta=0 , then tan^-1x_1+tan^-1x_2+tan^-1x_3+tan^-1x_4 is equal to

If x_1, x_2, x_3 and x_4 are the roots of the equations x^4-x^3sin2beta+x^2cos2beta-xcosbeta-sinbeta=0, prove that tan^(-1)x_1+tan^(-1)x_2+tan^(-1)x_3+tan^(-1)x_4=(pi/2)-beta .

If x_1, x_2, x_3 and x_4 are the roots of the equations x^4-x^3sin2beta+x^2cos2beta-xcosbeta-sinbeta=0, prove that tan^(-1)x_1+tan^(-1)x_2+tan^(-1)x_3+tan^(-1)x_4=(pi/2)-beta .

If x_1, x_2, x_3,a n dx_4 are the roots of the equations x^4-x^3sin2beta+x^2cos2beta-xcosbeta-sinbeta=0, prove that tan^(-1)x_1+tan^(-1)x_2+tan^(-1)x_3+tan^(-1)x_4=npi+(pi/2)-beta , where n is an integer.

If x_1, x_2, x_3, x_4 are roots of the equation x^4-x^3sin2beta+x^2cos2beta-xcosbeta-sinbeta=0 , then sum_(i=1)^4tan^-1x_i is equal to

If tan theta_(1),tan theta_(2),tan theta_(3),tan theta_(4) are the roots of the equation x^(4)-x^(3)sin2 beta+x^(2)cos2 beta-x cos beta-sin beta=0 then prove that tan(theta_(1)+theta_(2)+theta_(3)+theta_(4))=cot beta