Home
Class 12
MATHS
lim(x rarr 0^+)(x e^(1//x))/(1+e^(1//x))...

`lim_(x rarr 0^+)(x e^(1//x))/(1+e^(1//x))=`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr 0) (e^(1/x)-1)/(e^(1/x)+1) =

lim_(x rarr0+)(xe^((1)/(x)))/(1+e^((1)/(x)))

Evaluate lim_(x rarr0)(e^((1)/(x))-1)/(e^((1)/(x))+1),x!=0

lim_(x rarr0)(1+x)^((1)/(x))=e

lim_(x rarr0)(e^(1/x)-e^(-1/x))/(e^(1/x)+e^(-1/x))

lim_(x rarr0)(1+e^(-(1)/(x)))/(1-e^(-(1)/(x))))

lim_(x rarr0)(e^((1)/(x))-1)/(e^((1)/(x))+1) is equal to

lim_(x rarr0)(e^((1)/(x))-1)/(e^((1)/(x))+1)

The value of lim_(x rarr0)((e^(1/x^(2))-1)/(e^(1/x^(2)+1))) is :

lim_(x rarr0)((e^(x)-x-1)/(x))