Home
Class 12
MATHS
The nubmber of solutions of x in the int...

The nubmber of solutions of x in the interval `[0,5pi]` satisfying the equation `3sin^(2)x-7sinx+2=0` is

A

0

B

5

C

6

D

10

Text Solution

Verified by Experts

The correct Answer is:
C

Given ,`3sin^(2)x-7sinx+2=0`
`rArr3sin^(2)x-6sinx-sinx-+2=0`
`rArr3sinx(sinx-2)-1(sinx-2)=0`
`rArr(3sinx-1)(sinx-2)=0`
`rArrsinx=(1)/(3)or2rArrsinx=(1)/(3) " " [becausesinxne2]`
`rArrx=sin^(-1)((1)/(3))`
Let `"sin"^(-1)(1)/(3)=alpha,0ltalphalt(pi)/(2),alphain[-(pi)/(2),(pi)/(2)]`
Then `alpha,pi-alpha,2pi+alpha,3pi-alpha,4pi+alpha,5pi-alpha` are the solutions in `[0,5pi]`.
`therefore` Required number of solutions are 6.
Promotional Banner

Similar Questions

Explore conceptually related problems

The number of values of x in the interval [0, 3pi] satisfying the equation 3sin^(2)x-7sinx+2=0 is

The number of values of x in the interval [0, 5pi] satisfying the equation 3 sin^(2)x - 7 sin x + 2 = 0 is

The number of values of x in the in interval [0,5 pi] satisfying the equation 3sin^(2)x-7sin x+2=0 is 0(b)5(c)6(d)10

The number of values of x in the interval [0,5pi] satisfying the equation 3sin^2x-7sinx+2=0 is

The number of values of x in the interval 0,5 pi satisfying the equation 3sin^(2)x-7sin x+2=0 is 0(b)5(c)6(d)10

The number of value(s) of x in the interval [0,5pi] satisfying the inequation 3sin^(2)x - 7 sinx +2 lt 0 such that sinx is an integer is