Home
Class 12
MATHS
"sin"^(-1)(8)/(17)+"sin"^(-1)(3)/(5) is...

`"sin"^(-1)(8)/(17)+"sin"^(-1)(3)/(5)` is equal to

A

`cos^(-1)((36)/(85))`

B

`cos^(-1)((17)/(38))`

C

`cos^(-1)((14)/(47))`

D

`cos^(-1)((42)/(61))`

Text Solution

Verified by Experts

The correct Answer is:
A

Let `sin^(-1)((8)/(17))=xandsin^(-1)((3)/(5))=y`
Then , sin x `=(8)/(17) and sin y=(3)/(5)`
Now , cos (x+y) =cos x cosy -sin xsiny
`=sqrt(1-sin^(2)x)sqrt(1-sin^(2)y)-sinxsiny`
`=sqrt(1-((8)/(17))^(2))sqrt(1-((3)/(5))^(2))-(8)/(17)xx(3)/(5)`
`=sqrt(1-(64)/(289))sqrt(1-(9)/(25))-(24)/(85)=sqrt((22)/(289))sqrt((16)/(25))-(24)/(85)=(15)/(17)xx(4)/(5)-(24)/(85)`
`rArrx+y=cos^(-1)((60)/(85)-(24)/(85))`
`rArrsin^(-1)((8)/(17))+sin^(-1)((3)/(5))=cos^(-1)((36)/(85))`
Promotional Banner

Similar Questions

Explore conceptually related problems

sin^(-1)((12)/(13))-sin^(-1)((3)/(5)) is equal to

What is "sin"^(-1)(3)/(5)- "sin"^(-1)(4)/(5) equal to ?

sin(cos^(-1)(3/5)) is equal to

The valueof 2sin^(-1).(4)/(5)+2sin^(-1).(5)/(13)+2sin^(-1).(16)/(65) is equal to

"sin"^(-1)(4)/(5)+2"tan"^(-1)(1)/(3) is equal to

sin[3sin^(-1)((1)/(5))] is equal to