Home
Class 12
MATHS
If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , th...

If `cos^(-1)x+cos^(-1)y+cos^(-1)z=pi` , then

A

`x^(2)+y^(2)+z^(2)+2xyz=1`

B

`(sin^(-1)x+sin^(-1)y+sin^(-1)z)=cos^(-1)x+cos^(-1)y+cos^(-1)z`

C

`xy+yz+zx=x+y+z-1`

D

`(x+(1)/(x))+(y+(1)/(y))+(z+(1)/(z))ge6`

Text Solution

Verified by Experts

The correct Answer is:
A

`cos^(-1)x+cos^(-1)y+cos^(-1)z=pi`
`rArrsin^(-1)x+sin^(-1)y+sin^(-1)z=(pi)/(2)`
Also , `cos^(-1)x+cos^(-1)y=cos^(-1)(-z)`
`rArrxy-sqrt(1-x^(2))sqrt(1-y^(2))=-z`
`rArrx^(2)+y^(2)+z^(2)+2xyz=1`
Promotional Banner

Similar Questions

Explore conceptually related problems

If cos^(-1)x +cos^(-1)y +cos^(-1)z =3pi then x+y+z is :

If cos^(-1)x+cos^(-1)y+cos^(-1)z=3 pi, then xy+yz+zx is equal to

If cos^(-1)x+cos^(-1)y+cos^(-1)z=3pi ,then the value of x^(2012),+y^(2012)+z^(2012)+(6)/(x^(2011)+y^(2011)+z^(2011)) is equal to:

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi, where -1<=x,y,z<=1, then find the value of x^(2)+y^(2)+z^(2)+2xyz

If : cos^(-1)x+cos^(-1)y+cos^(-1)z=3pi, " then :" x (y+z)+y(z+x)+z(x+y)=

If cos^(-1)x+cos^(-1)y+cos^(-1)z=0, then which of the following is correct?

If x,y,z in[-1,1] such that cos^(-1)x+cos^(1)y+cos^(-1)z=3 pi, then find the values of (1)xy+yz+zy and (2)x(y+z)+y(z+x)+z(x+y)

If cos^(-1)x+cos^(-1)y+cos^(-1)=pi, prove that x^(2)+y^(2)+z^(2)+2xyz=1

If sin^(-1)x +cos^(-1)y +sin^(-1)z=2pi then 2x-z+y is :