Home
Class 12
MATHS
If angleA=90^(@) in the DeltaABC , then...

If `angleA=90^(@)` in the `DeltaABC` , then `tan^(-1)((c)/(a+b))+tan^(-1)((b)/(a+c))` is equal to

A

0

B

1

C

`(pi)/(4)`

D

`(pi)/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( \tan^{-1}\left(\frac{c}{a+b}\right) + \tan^{-1}\left(\frac{b}{a+c}\right) \) given that \( \angle A = 90^\circ \) in triangle ABC. ### Step-by-Step Solution: 1. **Understanding the Triangle**: Since \( \angle A = 90^\circ \), triangle ABC is a right triangle with \( A \) as the right angle. By convention, we denote the sides opposite to the angles as follows: - Side \( a \) opposite angle \( A \) - Side \( b \) opposite angle \( B \) - Side \( c \) opposite angle \( C \) 2. **Using the Formula for Sum of Inverses**: We use the formula for the sum of two inverse tangents: \[ \tan^{-1}(x) + \tan^{-1}(y) = \tan^{-1}\left(\frac{x+y}{1-xy}\right) \] where \( x = \frac{c}{a+b} \) and \( y = \frac{b}{a+c} \). 3. **Substituting Values**: Substitute the values of \( x \) and \( y \): \[ \tan^{-1}\left(\frac{c}{a+b}\right) + \tan^{-1}\left(\frac{b}{a+c}\right) = \tan^{-1}\left(\frac{\frac{c}{a+b} + \frac{b}{a+c}}{1 - \frac{c}{a+b} \cdot \frac{b}{a+c}}\right) \] 4. **Finding the Numerator**: The numerator becomes: \[ \frac{c(a+c) + b(a+b)}{(a+b)(a+c)} = \frac{ca + c^2 + ab + b^2}{(a+b)(a+c)} \] 5. **Finding the Denominator**: The denominator becomes: \[ 1 - \frac{cb}{(a+b)(a+c)} = \frac{(a+b)(a+c) - cb}{(a+b)(a+c)} = \frac{a^2 + ab + ac + bc - cb}{(a+b)(a+c)} = \frac{a^2 + ab + ac}{(a+b)(a+c)} \] 6. **Combining the Results**: Now we can combine the results: \[ \tan^{-1}\left(\frac{ca + c^2 + ab + b^2}{a^2 + ab + ac}\right) \] 7. **Using Pythagorean Theorem**: Since \( A \) is a right angle, we can use the Pythagorean theorem: \[ a^2 + b^2 = c^2 \] Thus, we can simplify the expression further. 8. **Final Simplification**: After simplification, we find that: \[ \tan^{-1}(1) = \frac{\pi}{4} \] ### Final Result: Thus, the value of \( \tan^{-1}\left(\frac{c}{a+b}\right) + \tan^{-1}\left(\frac{b}{a+c}\right) \) is: \[ \frac{\pi}{4} \]

To solve the problem, we need to evaluate the expression \( \tan^{-1}\left(\frac{c}{a+b}\right) + \tan^{-1}\left(\frac{b}{a+c}\right) \) given that \( \angle A = 90^\circ \) in triangle ABC. ### Step-by-Step Solution: 1. **Understanding the Triangle**: Since \( \angle A = 90^\circ \), triangle ABC is a right triangle with \( A \) as the right angle. By convention, we denote the sides opposite to the angles as follows: - Side \( a \) opposite angle \( A \) - Side \( b \) opposite angle \( B \) ...
Promotional Banner

Similar Questions

Explore conceptually related problems

In triangleABC , if angleA=90^(@)", then "tan^(-1)((c)/(a+b))+tan^(-1)((b)/(a+c))=

In Delta ABC, if (tan A-tan B)/(tan A+tan B)=(c-b)/(c), then A is equal to

If in triangle ABC, C = 90^circ then prove that tan^(-1) (a/(c+b)) + tan^(-1) (b/(a+c)) = pi/4 .

In a DeltaABC , if B=90^(@) , then tan^(2).(A)/(2) =

In DeltaABC," if " angleC=90^(@)," then " (a+c)/(b)+(b+c)/(a) is equal to :

tan^(-1)( (a+b tan c)/ (b-a tan x) )

In any DeltaABC,("tan"(A)/(2)-"tan"(B)/(2))/("tan"(A)/(2)+"tan"(B)/(2)) is equal to

In DeltaABC,1-tan.(A)/(2)tan.(B)/(2) =