Home
Class 12
MATHS
If the vectors veca=hati+ahatj+a^(2)hatk...

If the vectors `veca=hati+ahatj+a^(2)hatk, vecb=hati+bhatj+b^(2)hatk, vecc=hati+chatj+c^(2)hatk` are three non-coplanar vectors and `+(a, a^(2), 1+a^(3)),(b,b^(2),1+b^(3)),(c,c^(2),1+c^(3))|=0` , then the value of `abc` is

A

0

B

1

C

2

D

-1

Text Solution

Verified by Experts

The correct Answer is:
D

Since `vec(a),vec(b) and vec(c)` are non-coplanar vectos, therefore `[vec(a),vec(b),vec(c)]ne 0`
`Rightarrow Delta=|{:(,1,a,a^(2)),(,1,b,b^(2)),(,1,c,c^(2)):}|ne 0`
`Rightarrow Delta ne 0`
Now, `|{:(,a,a^(2),1+a^(2)),(,b,b^(2),1+b^(3)),(,c,c^(2),1+c^(3)):}|=0`
`Rightarrow |{:(,a,a^(2),1),(,b,b^(2),1),(,c,c^(2),1):}|+|{:(,a,a^(2),a^(3)),(,b,b^(2),b^(3)),(,c,c^(2),c^(3)):}|=0`
`Rightarrow Delta(1+abc)=0`
`Rightarrow abc=-1`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORNER|18 Videos
  • MHTCET 2008

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MATHEMATICS|50 Videos

Similar Questions

Explore conceptually related problems

If the vectors veca=hati+ahatj+a^(2)hatk, vecb=hati+bhatj+b^(2)hatk, vecc=hati+chatj+c^(2)hatk are three non-coplanar vectors and | (a, a^(2), 1+a^(3)),(b,b^(2),1+b^(3)),(c,c^(2),1+c^(3))|=0 , then the value of abc is

The vectors veca=hati-2hatj+3hatk, vecb=-2hati+3hatj-4hatk and vec c=hati-3hatj+lambdahatk are coplanar if the value of lambda is

If veca =hati + hatj - hatk, vecb = 2hati + 3hatj + hatk and vec c = hati + alpha hatj are coplanar vector , then the value of alpha is :

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If the vectors veca=2hati-hatj+hatk, vecb=hati+2hatj-hat(3k) and vecc= 3hati+lamda hatj+5hatk are coplanar the value of lamda is (A) -1 (B) 3 (C) -4 (D) -1/4

If veca = 2 hati - 3hatj, vecb = hati + hatj -hatk, vecc = 3hati - hatk, find [a vecb vecc]

If veca=hati+hatj+hatk, vecb=2hati-hatj+3hatk and vecc=hati-2hatj+hatk find a unit vector parallel to ther vector 2veca-vecb+3cevc .

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-MHTCET 2007-MATHEMATICS
  1. A common tangent to 9x^(2) - 16y^(2) = 144 and x^(2) + y^(2) = 9 is

    Text Solution

    |

  2. If the foci of the ellipse (x^2)/(16)+(y^2)/(b^2)=1 and the hyperbola ...

    Text Solution

    |

  3. If the vectors veca=hati+ahatj+a^(2)hatk, vecb=hati+bhatj+b^(2)hatk, v...

    Text Solution

    |

  4. Let vec(a)=2hati-hatj+hatk, vec(b)=hati+2hatj-hatk and vec(c)=hati+hat...

    Text Solution

    |

  5. If y=log(cosx)sinx, then (dy)/(dx) is equal to

    Text Solution

    |

  6. If y^(2) = ax^(2) + bx + c , where a,b,c, are constants , then y^...

    Text Solution

    |

  7. If the constant forces 2hati-5hatj+6hatk and -hati+2hatj-hatk act on a...

    Text Solution

    |

  8. Three letters, to each of which corresponds an envelope, are placed in...

    Text Solution

    |

  9. Which of the term is not used in a linear programming problem ?

    Text Solution

    |

  10. int cos^(3)x.e^(log(sin x)) dx is equal to

    Text Solution

    |

  11. The value of int(0)^(pi//2) (cos3x+1)/(2cos x-1)dx is

    Text Solution

    |

  12. The value of int0 1tan^(-1)((2x-1)/(1+x-x^2))dx is (A) 1 (B) 0 (C) -1 ...

    Text Solution

    |

  13. If the function f(x)=2x^3-9a x^2+12 x^2x+1,w h e r ea >0, attains its ...

    Text Solution

    |

  14. In the interval [0,1], the function x^(25)(1-x)^(75) takes its maximum...

    Text Solution

    |

  15. The constraints -x(1)+x(2)lt 1, -x(1)+3x(2)le9, x(1), x(2)gt, 0 difine...

    Text Solution

    |

  16. By the application of Simpson's one-third rule numerical integration, ...

    Text Solution

    |

  17. The function f(x)=log(1+x)(2x)/(2+x) is increasing on

    Text Solution

    |

  18. If f(x)= kx-sin x is monotonically increasing then

    Text Solution

    |

  19. Which of the following statement has the truth value F ?

    Text Solution

    |

  20. The positive root of x^(2)-78.8=0 after first approximation by Newton ...

    Text Solution

    |