Home
Class 12
MATHS
int e^(x)""((x-1)/(x^(2)))dx is equal to...

`int e^(x)""((x-1)/(x^(2)))dx` is equal to

A

`(e^(x))/(x^(2)) +c`

B

`(-e^(x))/(x^(2))+c`

C

`(e^(x))/(x)+c`

D

`(-e^(x))/(x)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int e^x \frac{x-1}{x^2} \, dx, \] we can break it down into simpler parts. ### Step 1: Rewrite the Integral We can rewrite the integrand as follows: \[ \int e^x \left( \frac{x}{x^2} - \frac{1}{x^2} \right) \, dx = \int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) \, dx. \] ### Step 2: Split the Integral Now, we can split the integral into two separate integrals: \[ \int e^x \frac{1}{x} \, dx - \int e^x \frac{1}{x^2} \, dx. \] ### Step 3: Use Integration by Parts For the first integral, we will use integration by parts. Let: - \( u = \frac{1}{x} \) which gives \( du = -\frac{1}{x^2} \, dx \), - \( dv = e^x \, dx \) which gives \( v = e^x \). Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ \int e^x \frac{1}{x} \, dx = e^x \cdot \frac{1}{x} - \int e^x \left(-\frac{1}{x^2}\right) \, dx. \] This simplifies to: \[ \int e^x \frac{1}{x} \, dx = \frac{e^x}{x} + \int e^x \frac{1}{x^2} \, dx. \] ### Step 4: Combine the Integrals Now, substituting back into our expression, we have: \[ \int e^x \frac{x-1}{x^2} \, dx = \left( \frac{e^x}{x} + \int e^x \frac{1}{x^2} \, dx \right) - \int e^x \frac{1}{x^2} \, dx. \] The integrals of \( \int e^x \frac{1}{x^2} \, dx \) cancel out, leaving us with: \[ \int e^x \frac{x-1}{x^2} \, dx = \frac{e^x}{x} + C, \] where \( C \) is the constant of integration. ### Final Result Thus, the final result is: \[ \int e^x \frac{x-1}{x^2} \, dx = \frac{e^x}{x} + C. \]

To solve the integral \[ \int e^x \frac{x-1}{x^2} \, dx, \] we can break it down into simpler parts. ...
Promotional Banner

Topper's Solved these Questions

  • MHTCET 2008

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MATHEMATICS|50 Videos
  • MHTCET 2010

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Mathematics|50 Videos

Similar Questions

Explore conceptually related problems

int e^(x)((x-2)/((x-1)^(2)))dx is equal to (i) (e^(x))/(x-1)+C (ii) (e^(x))/((x-1)^(2))+C( iii) (2e^(x))/((x-1)^(2))+C( iv )(e^(x)-1)/(x-1)+C

int(e^(x)(x-1)(x-lnx))/(x^(2))dx is equal to

int e^(x)((x^(2)-3)/((x-1)^(2)))dx is equal to

int(x e^(x))/((1+x)^(2)) dx is equal to

int e^(x)((x^(2)+1))/((x+1)^(2))dx is equal to

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

int sqrt((e^(x)-1)/(e^(x)+1))dx is equal to

int(1)/(e^(x)+1)dx is equal to

int(1)/(e^(x)+1)dx is equal to

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-MHTCET 2009-MATHEMATICS
  1. lim(x to 1)(log ex)^(1//logx) is equal to

    Text Solution

    |

  2. int[sin(logx)+cos(logx)]dx

    Text Solution

    |

  3. int e^(x)""((x-1)/(x^(2)))dx is equal to

    Text Solution

    |

  4. int(5)^(10) ""(1)/((x-1)(x-2))dx is equal to

    Text Solution

    |

  5. For a certain function u(x), given that u(0)=3, u(1)=12, u(2)=81, u(3)...

    Text Solution

    |

  6. The value of ((Delta^(2))/(E))x^(3) at h=1 is

    Text Solution

    |

  7. General solution of the differential equation (dy)/(dx)=(x+y+1)/(x+y-...

    Text Solution

    |

  8. The order and degree of the differential equation (d^(2)y)/(dx^(2))=r...

    Text Solution

    |

  9. Form of the differential equation of all family of lines y=mx+(4)/(m) ...

    Text Solution

    |

  10. The focal distance of a point P on the parabola y^(2)=12x if the ordi...

    Text Solution

    |

  11. Focus of hyperbola is (+-3,0) and equation of tangent is 2x+y-4=0, fin...

    Text Solution

    |

  12. If 4x-3y+k=0 touches the ellipse 5x^(2)+9y^(2)=45 , then k is equ...

    Text Solution

    |

  13. If m1 and m2 are the slopes of tangents to x^2+y^2= 4 from the point (...

    Text Solution

    |

  14. If theta is the angle between the lines ax^2 +2hxy + by^2 =0 , then an...

    Text Solution

    |

  15. find the derivative of e^(x) + e^(y) = e^(x +y)

    Text Solution

    |

  16. If xy = tan^(-1) (xy) + cot^(-1) (xy), " then" (dy)/(dx) is equal to

    Text Solution

    |

  17. Find a polynomial f(x) of degree 2 where f(0)=8, f(1)=12, f(2)=18

    Text Solution

    |

  18. Tangent to the ellipse (x^(2))/(32)+(y^(2))/(18)=1 having slope -(3)/...

    Text Solution

    |

  19. int x log x dx is equal to

    Text Solution

    |

  20. int(0)^(pi//2) ""(sin x - cos x)/( 1-sin x * cos x) dx is equal to

    Text Solution

    |