Home
Class 12
MATHS
int(0)^(pi//2) ""(sin x - cos x)/( 1-sin...

`int_(0)^(pi//2) ""(sin x - cos x)/( 1-sin x * cos x) dx ` is equal to

A

0

B

`(pi)/(2)`

C

`(pi)/(4)`

D

`pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin x - \cos x}{1 - \sin x \cos x} \, dx, \] we can use a symmetry property of definite integrals. ### Step 1: Use the symmetry property We know that \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx. \] For our case, \( a = 0 \) and \( b = \frac{\pi}{2} \). Thus, we can rewrite the integral as: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin\left(\frac{\pi}{2} - x\right) - \cos\left(\frac{\pi}{2} - x\right)}{1 - \sin\left(\frac{\pi}{2} - x\right) \cos\left(\frac{\pi}{2} - x\right)} \, dx. \] ### Step 2: Simplify the expression Using the identities \( \sin\left(\frac{\pi}{2} - x\right) = \cos x \) and \( \cos\left(\frac{\pi}{2} - x\right) = \sin x \), we can rewrite the integral: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\cos x - \sin x}{1 - \cos x \sin x} \, dx. \] ### Step 3: Combine the two integrals Now we have two expressions for \( I \): 1. \( I = \int_{0}^{\frac{\pi}{2}} \frac{\sin x - \cos x}{1 - \sin x \cos x} \, dx \) 2. \( I = \int_{0}^{\frac{\pi}{2}} \frac{\cos x - \sin x}{1 - \cos x \sin x} \, dx \) Adding these two equations: \[ 2I = \int_{0}^{\frac{\pi}{2}} \left( \frac{\sin x - \cos x}{1 - \sin x \cos x} + \frac{\cos x - \sin x}{1 - \cos x \sin x} \right) dx. \] ### Step 4: Simplify the sum The two fractions have the same denominator, so we can combine them: \[ 2I = \int_{0}^{\frac{\pi}{2}} \frac{(\sin x - \cos x) + (\cos x - \sin x)}{1 - \sin x \cos x} \, dx. \] The numerator simplifies to zero: \[ (\sin x - \cos x) + (\cos x - \sin x) = 0. \] Thus, we have: \[ 2I = \int_{0}^{\frac{\pi}{2}} 0 \, dx = 0. \] ### Step 5: Solve for \( I \) From \( 2I = 0 \), we conclude that: \[ I = 0. \] ### Final Answer The value of the integral is: \[ \int_{0}^{\frac{\pi}{2}} \frac{\sin x - \cos x}{1 - \sin x \cos x} \, dx = 0. \]

To solve the integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin x - \cos x}{1 - \sin x \cos x} \, dx, \] we can use a symmetry property of definite integrals. ...
Promotional Banner

Topper's Solved these Questions

  • MHTCET 2008

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MATHEMATICS|50 Videos
  • MHTCET 2010

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Mathematics|50 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)(a sin x + b cos x)/(sin x + cos x) dx=

int_(0)^(pi//2) x sin x cos x dx

int_(0)^( pi/2)((sin x cos x) /(1+sin 4x ))dx

int_(0)^(pi//2) x sin cos x dx=?

int_(0)^(pi) dx/(3+2sin x + cos x) =

int_(0)^(pi//2)(sin x.cos x)/(1+sin^(4)x)dx=

int_(0)^( pi/2)(sin x)/(1+cos x)dx

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-MHTCET 2009-MATHEMATICS
  1. Form of the differential equation of all family of lines y=mx+(4)/(m) ...

    Text Solution

    |

  2. The focal distance of a point P on the parabola y^(2)=12x if the ordi...

    Text Solution

    |

  3. Focus of hyperbola is (+-3,0) and equation of tangent is 2x+y-4=0, fin...

    Text Solution

    |

  4. If 4x-3y+k=0 touches the ellipse 5x^(2)+9y^(2)=45 , then k is equ...

    Text Solution

    |

  5. If m1 and m2 are the slopes of tangents to x^2+y^2= 4 from the point (...

    Text Solution

    |

  6. If theta is the angle between the lines ax^2 +2hxy + by^2 =0 , then an...

    Text Solution

    |

  7. find the derivative of e^(x) + e^(y) = e^(x +y)

    Text Solution

    |

  8. If xy = tan^(-1) (xy) + cot^(-1) (xy), " then" (dy)/(dx) is equal to

    Text Solution

    |

  9. Find a polynomial f(x) of degree 2 where f(0)=8, f(1)=12, f(2)=18

    Text Solution

    |

  10. Tangent to the ellipse (x^(2))/(32)+(y^(2))/(18)=1 having slope -(3)/...

    Text Solution

    |

  11. int x log x dx is equal to

    Text Solution

    |

  12. int(0)^(pi//2) ""(sin x - cos x)/( 1-sin x * cos x) dx is equal to

    Text Solution

    |

  13. Volume of the parallelopiped having vertices at O-=(0,0,0) , A-=(2,-2...

    Text Solution

    |

  14. If 2veca+ 3vecb-5 vecc=vec0, then ratio in which vecc divides vec...

    Text Solution

    |

  15. ~(~p to q)-=

    Text Solution

    |

  16. Simplify the following circuit and find the boolean polynomial .

    Text Solution

    |

  17. Simplify (p vv q) ^^ (p vv ~q).

    Text Solution

    |

  18. Equation of tangent to the parabola y^(2)=16xx at P(3,6) is

    Text Solution

    |

  19. If lim(x to 1)((e^(k)-1)sin kx)/(x^(2))=4, then k is equal to

    Text Solution

    |

  20. The derivative of cos x^(3) w.r.t. x^(3) is

    Text Solution

    |