Home
Class 12
MATHS
The value of lim(x to 0) (15^(x) - 5^(x...

The value of `lim_(x to 0) (15^(x) - 5^(x) - 3^(x) + 1)/(1 - cos 2x) ` is

A

`((log 3) (log 5))/(2)`

B

2 (log 3) (log 5)

C

`(log 3 + log 5)/(2)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to 0} \frac{15^x - 5^x - 3^x + 1}{1 - \cos 2x} \] we will follow these steps: ### Step 1: Analyze the numerator and denominator As \( x \to 0 \), both the numerator and denominator approach 0. Thus, we can apply L'Hôpital's Rule, which states that if we have an indeterminate form \( \frac{0}{0} \), we can differentiate the numerator and denominator. ### Step 2: Differentiate the numerator and denominator 1. **Numerator**: Differentiate \( 15^x - 5^x - 3^x + 1 \): \[ \frac{d}{dx}(15^x) = 15^x \ln(15), \quad \frac{d}{dx}(5^x) = 5^x \ln(5), \quad \frac{d}{dx}(3^x) = 3^x \ln(3) \] Therefore, the derivative of the numerator is: \[ 15^x \ln(15) - 5^x \ln(5) - 3^x \ln(3) \] 2. **Denominator**: Differentiate \( 1 - \cos(2x) \): \[ \frac{d}{dx}(1 - \cos(2x)) = 2 \sin(2x) \] ### Step 3: Rewrite the limit using derivatives Now we can rewrite the limit as: \[ \lim_{x \to 0} \frac{15^x \ln(15) - 5^x \ln(5) - 3^x \ln(3)}{2 \sin(2x)} \] ### Step 4: Evaluate the limit as \( x \to 0 \) Substituting \( x = 0 \) into the derivatives: - \( 15^0 = 1 \), \( 5^0 = 1 \), \( 3^0 = 1 \) - Thus, the numerator becomes: \[ 1 \cdot \ln(15) - 1 \cdot \ln(5) - 1 \cdot \ln(3) = \ln(15) - \ln(5) - \ln(3) \] Using the properties of logarithms: \[ \ln(15) - \ln(5) - \ln(3) = \ln\left(\frac{15}{5 \cdot 3}\right) = \ln(1) = 0 \] The denominator becomes: \[ 2 \sin(0) = 0 \] Since we still have an indeterminate form \( \frac{0}{0} \), we apply L'Hôpital's Rule again. ### Step 5: Differentiate again 1. **Numerator**: Differentiate again: \[ \frac{d}{dx}(15^x \ln(15) - 5^x \ln(5) - 3^x \ln(3)) = 15^x (\ln(15))^2 - 5^x (\ln(5))^2 - 3^x (\ln(3))^2 \] 2. **Denominator**: Differentiate again: \[ \frac{d}{dx}(2 \sin(2x)) = 4 \cos(2x) \] ### Step 6: Rewrite the limit again Now we have: \[ \lim_{x \to 0} \frac{15^x (\ln(15))^2 - 5^x (\ln(5))^2 - 3^x (\ln(3))^2}{4 \cos(2x)} \] ### Step 7: Substitute \( x = 0 \) Substituting \( x = 0 \): - The numerator becomes: \[ 1 \cdot (\ln(15))^2 - 1 \cdot (\ln(5))^2 - 1 \cdot (\ln(3))^2 = (\ln(15))^2 - (\ln(5))^2 - (\ln(3))^2 \] - The denominator becomes: \[ 4 \cos(0) = 4 \] ### Step 8: Final limit evaluation Thus, the limit is: \[ \frac{(\ln(15))^2 - (\ln(5))^2 - (\ln(3))^2}{4} \] ### Conclusion The final value of the limit is: \[ \frac{1}{2} \left( \ln(3) \cdot \ln(5) \right) \]

To solve the limit \[ \lim_{x \to 0} \frac{15^x - 5^x - 3^x + 1}{1 - \cos 2x} \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • MHTCET 2009

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MATHEMATICS|50 Videos
  • MHTCET 2011

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise METHEMATICS|50 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(x to 0) (5^x - 5^(-x) )/(2x) is

The value of lim_(x rarr0)(27^(x)-9^(x)-3^(x)+1)/(sqrt(5)-sqrt(4+cos x)) is

The value of lim_( x -> 0 ) ( ( x + 1 )^5 - 1 ) / x

Evaluate lim_(x to 0) (1 - cos 2x)/(x)

Evaluate : lim_(x rarr0)(27^(x)-9^(x)-3^(x)+1)/(1-cos x)

Find the value of lim_(x rarr0)(10^(x)-2^(x)-5^(x)+1)/(x^(2))

The value of lim_(x to 0) (sqrt(1/2(1-cos^(2)x)))/x is

The value of lim_(x rarr0)(e^(x)-x-1)/(cos x-1) is

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-MHTCET 2010-Mathematics
  1. If int(0)^(1) tan^(-1) x dx = p , then the value of int(0)^(1) tan^(-1...

    Text Solution

    |

  2. If f(x) = x , g (x) = sinx , then int f(g(x)) dx is equal to

    Text Solution

    |

  3. The value of lim(x to 0) (15^(x) - 5^(x) - 3^(x) + 1)/(1 - cos 2x) i...

    Text Solution

    |

  4. The value of int(0)^(pi//2) log (sinx) dx is

    Text Solution

    |

  5. If x^(2) y^(5) = (x + y)^(7) , " then " (d^(2)y)/(dx^(2)) is equal to

    Text Solution

    |

  6. The equation of tangent to the curve given by x = 3 cos theta , y ...

    Text Solution

    |

  7. If veca,vecb,vecc are three non- coplanar vectors and vecp,vecq,vecr a...

    Text Solution

    |

  8. The volume of a parallelopiped whose coterminous edges are 2veca , 2ve...

    Text Solution

    |

  9. If x sec theta , y = tan theta , then the value of (d^(2) y)/(dx^(...

    Text Solution

    |

  10. If x=f(t) and y=g(t) , then write the value of (d^2y)/(dx^2) .

    Text Solution

    |

  11. The value of a and b such that the function f(x)={(-2sinx"," , -pi l...

    Text Solution

    |

  12. If the equation of the tangent to the curve y^2=a x^3+b at point (2,3)...

    Text Solution

    |

  13. The volume of the solid formed by rotating the area enclosed between t...

    Text Solution

    |

  14. int e^(tan x) (sec^(2) x + sec^(3) x sin x ) dx is equal to

    Text Solution

    |

  15. Differentiate (logx)^x with respect to logx .

    Text Solution

    |

  16. int(1)/(16x^(2)+9)dx is equal to

    Text Solution

    |

  17. Evaluate the following : int(4)^(7)((11-x)^(3))/(x^(3)+(11-x)^(3))d...

    Text Solution

    |

  18. Find the differential equation of the family of circles whose centres ...

    Text Solution

    |

  19. The solution of the differential equation y (1 + log x) (dx)/(dy) - x ...

    Text Solution

    |

  20. The order of the differential equation whose solution is ae^(x) + be^(...

    Text Solution

    |