Home
Class 12
MATHS
intcos(logx)dx...

`intcos(logx)dx`

A

` ( 1 ) / ( 2 ) [ sin ( log x ) + cos (log x ) ] + C `

B

` ( x ) /( 2 ) [ sin ( log x ) + cos ( log x ) ] + C `

C

` ( x )/( 2 ) [sin ( log x ) - cos ( log x ) ] + C `

D

` ( 1 ) / ( 2 ) [sin ( log x ) - cos ( log x ) ] + C `

Text Solution

Verified by Experts

The correct Answer is:
B

Let ` I= int cos (log x )* 1 dx " " ` … (i)
Use integral by parts,
` I = cos ( log x ) * x - int [ - sin ( log x)]* ( 1 ) /( x ) * x dx `
`=x * cos (log x ) + int sin ( log x ) * 1 dx `
` = x * cos (log x ) + [ sin ( log x ) * x - int cos (logx ) * (1 )/(x ) * xdx] + C `
` = x* cos ( log x ) + [ x sin (logx)- int cos (log x ) dx] + C `
` = x { sin (log x ) + cos (log x) } - I+ C `[from Eq. (i) ]
`rArr I = (x )/( 2 ) { sin (log x ) + cos ( log x ) } + C `
Promotional Banner

Topper's Solved these Questions

  • MHTCET 2011

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise METHEMATICS|50 Videos
  • MHTCET 2016

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Mathematics|50 Videos

Similar Questions

Explore conceptually related problems

intcos(logx)/xdx

int cos(logx)dx=?

intsin(logx)dx=

intcos(5+6x)dx

intcos(2x+5)dx

intcos(a-x)dx

intcos(blog(x/a))dx

intcos^-1(1/x)dx