Home
Class 12
MATHS
The equation of line passing through (3,...

The equation of line passing through `(3,-1,2)` and perpendicular to the lines `vec(r)=(hat(i)+hat(j)-hat(k))+lamda(2hat(i)-2hat(j)+hat(k))` and `vec(r)=(2hat(i)+hat(j)-3hat(k))+mu(hat(i)-2hat(j)+2hat(k))` is

A

`(x+3)/(2)=(y+1)/(3)=(z-2)/(2)`

B

`(x-3)/(3)=(y+1)/(2)=(z-2)/(2)`

C

`(x-3)/(2)=(y+1)/(3)=(z-2)/(2)`

D

`(x-2)/(2)=(y+1)/(2)=(z-2)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the equation of the line that passes through the point \( (3, -1, 2) \) and is perpendicular to the given lines, we can follow these steps: ### Step 1: Identify Direction Vectors of Given Lines The first line is given by the vector equation: \[ \vec{r} = \hat{i} + \hat{j} - \hat{k} + \lambda(2\hat{i} - 2\hat{j} + \hat{k}) \] From this, we can identify the direction vector \( \vec{b_1} \) as: \[ \vec{b_1} = 2\hat{i} - 2\hat{j} + \hat{k} \] The second line is given by: \[ \vec{r} = 2\hat{i} + \hat{j} - 3\hat{k} + \mu(\hat{i} - 2\hat{j} + 2\hat{k}) \] From this, we can identify the direction vector \( \vec{b_2} \) as: \[ \vec{b_2} = \hat{i} - 2\hat{j} + 2\hat{k} \] ### Step 2: Find the Cross Product of Direction Vectors To find a direction vector \( \vec{c} \) for the line we want, we need to take the cross product of \( \vec{b_1} \) and \( \vec{b_2} \): \[ \vec{c} = \vec{b_1} \times \vec{b_2} \] Calculating the cross product: \[ \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -2 & 1 \\ 1 & -2 & 2 \end{vmatrix} \] ### Step 3: Calculate the Determinant Calculating the determinant: \[ \vec{c} = \hat{i} \begin{vmatrix} -2 & 1 \\ -2 & 2 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & -2 \\ 1 & -2 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \( \begin{vmatrix} -2 & 1 \\ -2 & 2 \end{vmatrix} = (-2)(2) - (1)(-2) = -4 + 2 = -2 \) 2. \( \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} = (2)(2) - (1)(1) = 4 - 1 = 3 \) 3. \( \begin{vmatrix} 2 & -2 \\ 1 & -2 \end{vmatrix} = (2)(-2) - (-2)(1) = -4 + 2 = -2 \) Thus, \[ \vec{c} = -2\hat{i} - 3\hat{j} - 2\hat{k} \] ### Step 4: Write the Equation of the Line The line passes through the point \( (3, -1, 2) \) and has the direction vector \( \vec{c} = -2\hat{i} - 3\hat{j} - 2\hat{k} \). The vector equation of the line can be written as: \[ \vec{r} = (3, -1, 2) + \lambda(-2, -3, -2) \] ### Step 5: Convert to Symmetric Form The symmetric form of the line can be written as: \[ \frac{x - 3}{-2} = \frac{y + 1}{-3} = \frac{z - 2}{-2} \] ### Final Answer The equation of the line is: \[ \frac{x - 3}{-2} = \frac{y + 1}{-3} = \frac{z - 2}{-2} \]

To find the equation of the line that passes through the point \( (3, -1, 2) \) and is perpendicular to the given lines, we can follow these steps: ### Step 1: Identify Direction Vectors of Given Lines The first line is given by the vector equation: \[ \vec{r} = \hat{i} + \hat{j} - \hat{k} + \lambda(2\hat{i} - 2\hat{j} + \hat{k}) \] From this, we can identify the direction vector \( \vec{b_1} \) as: ...
Promotional Banner

Topper's Solved these Questions

  • MHTCET 2017

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MATHMATICS|50 Videos
  • MHTCET 2019 PAPER 1

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MATHEMATICS|50 Videos

Similar Questions

Explore conceptually related problems

Find the equations of a line passing through the point P(2,-1,3) and perpendicular to the lines vec(r ) =(hat(i) + hat(j) -hat(k)) +lambda (2hat(i) -2hat(j) +hat(k)) and vec( r) =(2hat(i) -hat(j) -3hat(k)) +mu (hat(i) +2hat(j) +2hat(k))

A line passes through (1, -1, 3) and is perpendicular to the lines r*(hat(i)+hat(j)-hat(k))+lambda(2hat(i)-2hat(j)+hat(k)) and r=(2hat(i)-hat(j)-3hat(k))+mu(hat(i)+2hat(j)+2hat(k)) obtain its equation.

vec(r )=(-4hat(i)+4hat(j) +hat(k)) + lambda (hat(i) +hat(j) -hat(k)) vec(r)=(-3hat(i) -8hat(j) -3hat(k)) + mu (2hat(i) +3hat(j) +3hat(k))

Show that the lines vec(r) =(hat(i) +2hat(j) +hat(k)) +lambda (hat(i)-hat(j)+hat(k)) " and " vec(r ) =(hat(i) +hat(j) -hat(k)) + mu (hat(i)- hat(j) + 2hat(k)) Do not intersect .

Find the equation in vector and cartesian form of the line passing through the point : (2,-1, 3) and perpendicular to the lines : vec(r) = (hat(i) + hat(j) - hat(k)) + lambda (2 hat(i) - 2 hat(j) + hat(k)) and vec(r) = (2 hat(i) - hat(j) - 3 hat(k) ) + mu (hat(i) + 2 hat(j) + 2 hat(k)) .

(A ) Find the vector and cartesian equations of the line through the point (5,2,-4) and which is parallel to the vector 3 hat(i) + 2 hat(j) - 8 hat(k) . (b) Find the equation of a line passing through the point P(2, -1, 3) and perpendicular to the lines : vec(r) = (hat(i) + hat(j) - hat(k) ) + lambda (2 hat(i) - 2 hat(j) + hat(k)) and vec(r) = (2 hat(i) - hat(j) - 3 hat(k) ) + mu (hat(i) + 2 hat(j) + 2 hat(k)) .

Find the equation of the line perpendicular to the lines : vec(r) = ( 3 hat(i) + 2 hat(j) - 4 hat(k)) + lambda (hat(i) + 2 hat(j) - 2 hat(k)) and vec(r) = (5 hat(j) - 2 hat(k) + mu (3 hat(i) + 2 hat(j) + 6 hat(k) ) and passing through the point (1,1,1) .

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-MHTCET 2018-Mathematics
  1. The line 5x+y-1=0 coincides with one of the lines given by 5x^(2)+xy-k...

    Text Solution

    |

  2. If A=[(1,2,3),(-1,1,2),(1,2,4)], then (A^(2)-5A)A^(-1)=

    Text Solution

    |

  3. The equation of line passing through (3,-1,2) and perpendicular to the...

    Text Solution

    |

  4. Letters in the word HULULULU are rearranged. The probability of all th...

    Text Solution

    |

  5. The sum of the first 10 terms of the series 9+99+999+ . . . Is

    Text Solution

    |

  6. If A,B,C are the angles off DeltaABC, then cotA*cotB+cotB*cotC+cotC*co...

    Text Solution

    |

  7. if int(dx)/(sqrt(16-9x^(2)))=Asin^(-1)(Bx)+C, then A+B=

    Text Solution

    |

  8. Evaluate: inte^x\ ((2+sin2x)/(1+cos2x))\ dx

    Text Solution

    |

  9. A coin is tossed three times. If X denotes the absolute difference bet...

    Text Solution

    |

  10. If 2 sin(theta+(pi)/(3))=cos(theta-(pi)/(6)), then tantheta=

    Text Solution

    |

  11. The area of the region bounded by x^(2)=4y,y=1,y=4 and the Y-axis lyin...

    Text Solution

    |

  12. if f(x)=(e^(x^(2))-cosx)/(x^(2)), for xne0 is continuous at x=0, then ...

    Text Solution

    |

  13. The maximum value of 2x+y subject to 3x+5yle26and5x+3yle30,xge0,yge0...

    Text Solution

    |

  14. If vec(a),vec(b),vec(c) are mutually perpendicular vectors having magn...

    Text Solution

    |

  15. If points P(4,5,x),Q(3,y,4) and R(5,8,0) are collinear, then the value...

    Text Solution

    |

  16. If the slope of one of the lines given by ax^(2)+2hxy+by^(2)=0 is two ...

    Text Solution

    |

  17. The equation of the line passing through the point (-3,1) and bisectin...

    Text Solution

    |

  18. The negation of the statement: ''Getting above 95% marks is necessary ...

    Text Solution

    |

  19. cos1^@ . cos2^@ . cos3^@.........cos179^@ is equal to :

    Text Solution

    |

  20. If the planes x-c y-b z=0,c x=y+a z=0a n db x+a y-z=0 pass through a s...

    Text Solution

    |