Home
Class 11
MATHS
[" Thesum of the series: "(1)/(log(2)4)+...

[" Thesum of the series: "(1)/(log_(2)4)+(1)/(log_(4)4)+(1)/(log_(8)4)+...+(1)/(log_(2)4)" is "],[[" (a) "(n(n+1))/(2)," (b) "(n(n+1)(2n+1))/(12)(c)(n(n+1))/(4)," (d) nomedities "]]

Promotional Banner

Similar Questions

Explore conceptually related problems

The sum of the series (1)/( log_(2) 4) + (1)/( log_(4) 4) + (1)/( log_(8) 4) + …... + (1)/( log_(2) 4) is

the sum of the series (1)/(log_(2)4)+(1)/(log_(4)4)+(1)/(log_(8)4)+.........+(1)/(log_(2)^(n)4)

The sum of the series: (1)/(log_(2)4)+(1)/(log_(4)4)+(1)/(log_(8)4)+...+(1)/(log_(2n)4) is (n(n+1))/(2) (b) (n(n+1)(2n+1))/(12) (c) (n(n+1))/(4) (d) none of these

(1)/(log_(3)2)+(2)/(log_(9)4)-(3)/(log_(27)8)=0

Series (1)/(log_(2)^(2)) + (1)/(log_(4)^(4)) + (1)/(log_(8)^(4)) + …..+ (1)/(log_(2^(n))4) =……….

The sum of the series: 1/((log)_2 4)+1/((log)_4 4)+1/((log)_8 4)++1/((log)_(2n)4) is (n(n+1))/2 (b) (n(n+1)(2n+1))/(12) (c) (n(n+1))/4 (d) none of these

(1)/(log_(2)(n))+(1)/(log_(3)(n))+(1)/(log_(4)(n))+....+(1)/(log_(43)(n))

(1)/(log_(2)(n))+(1)/(log_(3)(n))+(1)/(log_(4)(n))+....+(1)/(log_(43)(n))

(log_(5)4)(log_(4)3)(log_(3)2)(log_(2)1) =